• Top page
  • Timetable
  • Per session
  • Per presentation
  • How to
  • Meeting Planner



報酬 1
Reward 1

開催日 2014/9/12
時間 15:00 - 16:00
会場 Room H(304)
Chairperson(s) 古久保-徳永 克男 / Katsuo Furukubo-Toku (筑波大学生命環境系 / Institute of Biological Sciences, University of Tsukuba, Japan)
掛山 正心 / Masaki Kakeyama (長崎大学大学院医歯薬学総合研究科 神経機能学分野 / Department of Neurobiology and Behavior, Granduate School of Biomedical Sciences, Nagasaki University, Japan)

Single-neuron operant conditioning by two-photon imaging induces reward-timing-dependent modulation in cortical microcircuit

  • O2-H-3-4
  • 平 理一郎 / Riichiro Hira:1 大久保 文貴 / Fuki Ohkubo:1 正水 芳人 / Yoshito Masamizu:1 大倉 正道 / Masamichi Ohkura:2 中井 淳一 / Junichi Nakai:2 岡田 尚巳 / Takashi Okada:3 松崎 政紀 / Masanori Matsuzaki:1 
  • 1:基礎生物学研究所 / National institute for basic biology, Okazaki, Japan 2:埼玉大学 脳科学融合研究センター / Brain Science Institute, Saitama University, Japan 3:日本医科大学 生化学・分子生物学(分子遺伝学)講座 / Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan 

Activity patterns of individual cortical neurons change during brain-computer interface performance and motor adaptation. To investigate to what extent the modulation of individual neurons is affected by local ensemble interactions and global modulatory signals, we conducted two-photon calcium imaging of layer 2/3 neurons in the mouse motor cortex and simultaneously reinforced the activity of a single neuron with water delivery. The reinforcement increased the activity of the target neuron within 15 min and bi-directionally modulated the activity of a subset of non-target neurons. This bidirectional modulation depended on the relative timing between reward delivery and the neuronal activity, but not on the functional correlation with or distance from the target neuron. The bidirectional modulation was recreated by repetitive pairing of reward delivery and photoactivation of cortical neurons. The reward-timing-dependent bidirectional modulation may be a fundamental process in the layer 2/3 microcircuit reorganization for fast adaptation to novel environments.

Copyright © Neuroscience2014. All Right Reserved.