Contents 目次

2 The 46th Annual Meeting of the Japan Neuroscience Society
6 The JNS is Now a General Incorporated Association
7 New Management System of JNS General Incorporated Association
8 Results of the 2023 Councilors Election
9 Please make sure to update your membership information.
9 Please select your academic domain!
10 Renewal of Student Member / Overseas Student Member for FY 2023
11 We welcome Submissions to Neuroscience News
12 第46回 日本神経科学大会のご案内
15 一般社団法人 日本神経科学学会が発足しました
16 一般社団法人 日本神経科学学会の運営制度について
17 2023 年度 評議員選挙 結果公表
18 新年度から所属などが変更になる方へ : 会員情報の更新をお忘れなく！
18 学術ドメインの選択をお願いします！
19 2023年度 学生会員／海外学生会員 更新手続きのご案内
20 研究室紹介 : ゲノムDNA・RNA高次構造からなる脳の個性・病態を研究する（塩田 倫史）
22 研究室紹介 : 吾輩はPIである。ラボはまだ無い（竹内 春樹）
24 留学記 : カナダ・オンタリオ州での研究生活（五十嵐 敬幸）
26 神経科学トピックス : ミクログリアはホスファチジルセリン依存的に成体新生ニューロンのシナプスを貪食する（榑松 千紘）
28 神経科学トピックス : 神経障害性疼痛を寛解に導くミクログリア（河野 健太）
30 神経科学トピックス : 一次体性感覚野アストロサイトの活動制御による痛み関連行動の治療（竹田 育子）
33 神経科学トピックス : 外側手綱核から脳幹へ投射のニューロンが攻撃的覚醒に関与する（高橋 阿貴）
35 神経科学トピックス : 神経回路の最適化を支えるバーグマングリアによるシナプス貪食（森澤 陽介）
37 神経科学トピックス : 行動や感情变化に関与する神経細胞群を数秒・数分単位の時空間内に同定し
活動操作するための新規遺伝学的ツールの開発（長濱 健一郎）
38 神経科学トピックス : 体温の中枢調節の基本原理（中村 佳子）
40 神経科学ニュースへの原稿を募集しています
42 广告募集 : 目次配信メールへのバナー広告掲載について
44 編集後記・編集委員氏名・賛助会員一覧

日本神経科学学会 The Japan Neuroscience Society
〒113-0033 東京都文京区本郷7丁目2-2 本郷ビル9F
Hongo Bldg. 9F, 7-2-2 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Tel: +81-3-3813-0272 Fax: +81-3-3813-0296 E-mail: office@jnss.org
The Neuroscience News

Accommodation
Reservations for lodging are now available on the Neuroscience 2023 official website (https://neuroscience2023.jnss.org/en/accommodation.html). As the Sendai Tanabata Festival (August 6-8) will be held after the meeting, a large number of tourists will be visiting Sendai during that period. We recommend that you consider accommodation earlier.

Program Overview
■Symposia
(Title, Date and Time, Venue, Organizer)

-------- August 1. --------

Investigating major neuromodulatory systems in mice at circuit and cellular levels.
08:45-10:45 Room 1
Takashi Sato, Tianyi Mao

Brain activity unique to active and resting periods; physiological roles and underlying mechanisms
08:45-10:45 Room 2
Kimiko Shimizu, Yu Hayashi

Molecular and neural mechanisms underlying perceptual and behavioral modulations by multisensory integration
08:45-10:45 Room 4
Junya Hirokawa, Hiroyuki Manabe

Value management in the brain: from simple emotions to computational psychiatry
08:45-10:45 Room 5
Ken-Ichiro Tsutsui, Philippe Tobler

Molecular mechanism of motor neuron disease unravelled: achievements from the interdisciplinary collaboration
08:45-10:45 Room 6
Naoki Suzuki, Aaron Gitler
Toward fundamental technologies to decipher brain functions from the causal cycle of parts and the whole
08:45-10:45 Room 10
Kazuhiro Sakamoto, Hajime Mushiake

Brain-Machine Interface for internet of brains
14:00-16:00 Room 2
Takufumi Yanagisawa, Ryota Kanai

Cell type census of developing neuronal circuits
14:00-16:00 Room 3
Ai Nakashima, Nariko Arimura

Shedding new light on the implications of dopamine in normal brain functions and diseases
14:00-16:00 Room 4
Yoshio Iguchi, Louis-Eric Trudeau

New horizon of Hyper-Adaptability
14:00-16:00 Room 5
Hiroshi Imamizu, Tatsuya Mima

Cell-type-specific roles for acetylcholine in the CNS
14:00-16:00 Room 6
Helena Janickova

Frontiers in neuronal homeostasis in aging and neurodegenerative diseases
14:00-16:00 Room 10
Ichiro Kawahata, David Finkelstein

Neural mechanisms for recognition of "death"
17:00-19:00 Room 2
Teruhiro Okuyama, Haruki Takeuchi

Circuit, cellular, synaptic, and molecular mechanisms of information processing in the hippocampus
17:00-19:00 Room 3
Satoshi Kida, Paul Frankland

The Japan-China Joint Symposium New Frontiers in Developmental Neurobiology
17:00-19:00 Room 4
Mineko Kengaku, Weidong Li

Comparative perspective on vocal development, social learning, and communication in humans, mice, and songbirds
17:00-19:00 Room 5
Masashi Tanaka, Ryosuke Tachibana

JNS/IBRO Workshop on Publishing in Society Journals
The Hows and Whys of Publishing in a Society Journal: Conversation with the editors of Neuroscience Research (JNS) & Neuroscience (IBRO)
17:00-19:00 Room 6
Thomas McHugh, Jerome Sanes

Neurobiology of behavioral changes in social context
17:00-19:00 Room 10
Aki Takahashi, Scott Russo

Evolution, regulation, and function of REM sleep
8:45-10:45 Room 2
Masanori Sakaguchi, Takeshi Sakurai

Towards understanding neural network controlling multiple organ systems
8:45-10:45 Room 3
Keiko Matsuda, Kenta Maruyama

Multiscale and multimodal approaches for unraveling brain-body interactions
8:45-10:45 Room 4
Makoto Osanai, Yi Dai

Is "Ethics" Enough for Sustainable Development of Neurotechnology?
8:45-10:45 Room 5
Tamami Fukushi

Molecular properties driving synapse formation and sexual dimorphism in neural circuitry.
8:45-10:45 Room 6
Katsuhiko Tabuchi, Jason Aoto

Realization of extended intelligence and symptom alleviation with functional brain control
8:45-10:45 Room 10
Ko Matsui, Wen-Sung Lai

Gliadecoding and brain functions
14:00-16:00 Room 2
Schuichi Koizumi, Hiroaki Wake

Homeostasis and pathological mechanism by neural network-associated organ interaction system
14:00-16:00 Room 3
Shogo Tanabe, Hiroshi Kuniishi

Frontier of "gendered" neuroscience
14:00-16:00 Room 4
Noriko Osumi, Kaoru Saijo

Cortico-basal ganglia circuitry for action -from decision to movement-
14:00-16:00 Room 5
Sho Aoki, Susumu Setogawa

Symposium on Industry-Academia Collaboration
How can neuroscience-based technology be trusted and contribute to society?
*in Japanese
14:00-16:00 Room 6
Kenji Matsumoto, Takuya Ibaraki

Axon initial segment in health and disorder
14:00-16:00 Room 10
Yasushi Okamura, Hiroshi Kuba
Opening up the frontiers of neuroscience
08:45-10:45 Room 1
Tomomi Shimogori

Mental sensing and intervention by brain science-engineering collaboration
08:45-10:45 Room 2
Takuya Sasaki, Makiko Yamada

New trends in psychiatric pathophysiology approaching from a cross-disorder approach.
08:45-10:45 Room 3
Ryota Hashimoto, Akiko Hayashi-Takagi

Genomic and epigenetic regulation of brain function
08:45-10:45 Room 4
Yusuke Kishi, Yuki Fujita

Cross-species mechanisms of learning and adaptive behaviour
08:45-10:45 Room 5
Tom Macpherson, Aurelio Cortese

Brain-body interaction in neurodegeneration
08:45-10:45 Room 6
Masahisa Katsuno, Maria Pennuto

Open Access and its Challenges towards the Future of Science and Scientific Articles
*in Japanese
08:45-10:45 Room 10
Noriko Osumi, Kazuhiro Hayashi

Emerging view for neuronal circuits processing sensory information into memory
14:00-16:00 Room 2
Shinya Ohara, Sylvia Wirth

What makes you choose that action? -Frontiers of research on the neural circuits underlying decision-making
14:00-16:00 Room 3
Masaaki Ogawa, Kosuke Hamaguchi

Neuroscience of social behavior and autism
14:00-16:00 Room 4
Toru Takumi, Eunjoon Kim

Structural and functional insights in the basal ganglia network and the future
14:00-16:00 Room 5
Shigeki Kato, Fumino Fujiyama

NSR/Elsevier Symposium
Will BigData change Neuroscience?
14:00-16:00 Room 6
Ryota Kobayashi, Ken Nakae

Research Trends and Future Directions in Neuroscience
17:00-19:00 Room 1
Tetsuya Matsuda, Ayako Watabe

Elucidating Molecules and Tissue Environment for Functional Regeneration of the Aged Brain
17:00-19:00 Room 2
Kazunobu Sawamoto, Taeko Kobayashi

Integration of large-scale recording and simulation to reveal the holistic brain dynamics
17:00-19:00 Room 3
Riichiro Hira, Shinichiro Tsutsumi

Symposium in collaboration with Clinical and Related Societies What do young researchers think of basic and clinical collaborative research?
17:00-19:00 Room 4
Ryota Hashimoto, Hitoshi Hashimoto

Neurological Manipulation by Collaborating with Material Science and Molecular Technology
17:00-19:00 Room 5
Itsuki Ajoka, Kosei Takeuchi

Transcranial Ultrasound Stimulation (TUS): basic mechanism and application to humans
17:00-19:00 Room 6
Yasuo Terao, Ritsuko Hanajima

Brain Science in Moonshot R&D Project
09:00-11:00 Room 1
Ken-Ichiro Tsutsui

Frontiers in Dementia Research
09:00-11:00 Room 2
Takashi Saito, Makoto Higuchi

Interactive assembly of the neocortical GABAergic circuits
09:00-11:00 Room 3
Goichi Miyoshi, Hiroki Taniguchi

Neuro-immuno-endocrine system: hints for peaceful life
09:00-11:00 Room 4
Tatsushi Onaka, Yoshio Katayama

Approaching precision medicine: critical cell types and developmental periods of genetically-identifiable neurodevelopmental disorders
09:00-11:00 Room 5
Noboru Hiroi, Brady J. Maher

Structural and molecular plasticity linked to chronic pain and its recovery
09:00-11:00 Room 6
Makoto Tsuda, Xiaoke Chen

Retinal information processing: new insights into old questions with modern systems neuroscience tools
09:00-11:00 Room 7
Hiroki Asari, Wei Wei
MRI - Resonance between physics and neuroscience: application to Pathological Science
09:00-11:00 Room 8
Rie Ryoke, Tomokazu Tsurugizawa

Fundamentals, Applications, and Future of Automated Home-Cage Behavioral Monitoring/Phenotyping in Neuroscience
09:00-11:00 Room 9
Toshihiro Endo, Dan Ohtan Wang

*For the latest program including Plenary Lectures, Brain Prize Lecture, Special Lectures, and others, please visit the Neuroscience 2023 official website (https://neuroscience2023.jnss.org/en/program.html).

Neuroscience 2023 Secretariat
A & E Planning, Co., Ltd
TEL: +81-6-6350-7163
FAX: +81-6-6350-7164
E-mail: jns2023@aeplan.co.jp
The JNS is Now a General Incorporated Association

Michisuke Yuzaki
Former President, the Japan Neuroscience Society

Since its establishment in 1974, the Japan Neuroscience Society (JNS) has operated as a "voluntary organization" without corporate status, but as of April 1, 2023, it has reestablished itself as a General Incorporated Association. The voluntary organization will continue to exist until the end of FY2023 in order to take over financial matters. A new president of the General Incorporated Association will be formally approved at the General Assembly scheduled in May or June. The results of the election for the new president will be announced separately.

Incorporation is necessary not only to enhance external credibility, but also to ensure fairness and transparency in the management of the Society. In addition, General Incorporated Association can become a Public Interest Incorporated Association in the future, so that we will be able to conduct profitable business in the public interest and strengthen our financial base. With the incorporation of the Society, we have made various reforms to the Constitution and Bylaws, which had not been significantly changed since its establishment. The introduction of a Councilor system and new methods for electing Directors and the President have been introduced to include more members of different specialties, genders, ages and regions, and to reflect the views of a wider range of members in the management of the Society. I would like to express my deepest gratitude to the members who provided a variety of opinions through the General Assembly and questionnaires, as well as to the Board of Directors, the Executive Committee, and the Secretariat who were involved in the incorporation and revision of the Constitution and Bylaws.

The field has been plowed, but the seed has not yet been sown. To further advance neuroscience in Japan, I hope that all of you will continue to contribute to the management of the JNS, as well as to your own research and educational accomplishments.
New Management System of JNS General Incorporated Association

Yoshikazu Isomura
Former Director of General Affairs, the Japan Neuroscience Society

The Japan Neuroscience Society (JNS) is one of the leading academic organizations in neuroscience in Japan with more than 5,000 members. The establishment of a General Incorporated Association for the future of neuroscience has substantially changed the structure of the society’s management.

Introduction of Academic Domains
Members are required to choose one of the three Academic Domains: A. Basic Neuroscience, B. Systems & Information Neuroscience, or C. Clinical & Pathological Neuroscience. The number of seats for Councilors and Directors for each Academic Domain is determined proportionally based on the composition of the Academic Domains surveyed prior to the election.

Role of Councilors
Councilors (approximately 50-200) are elected by Regular Members from among Regular Members (approximately 4,800: including Regular Members, Overseas Regular Members, Junior Members, and Overseas Junior Members), and participate in important decisions at the General Assembly meeting as members of the General Incorporated Association. The term of office is four years (three years this term).

Role of Directors
The Directors (20 members) are elected in advance by the Councilors from among the Councilors and take office after approval at the General Assembly meeting. The Directors decide major matters related to the management of the Society at the Board of Directors meeting. The term of office of Directors is two years, preferably for a consecutive two terms. Operationally, half of the board members are elected every two years with the remainder subject to a vote of confidence for uninterrupted operation. Two Auditors are also appointed separately.

Role of President
The President is elected in advance by the Directors from among the Directors, takes office after approval at the General Assembly meeting, and leads the management of the Society, particularly the Board of Directors and Committees. Operationally, the term of office of the President is also two years, preferably for a consecutive two terms.

Committees
Under the Board of Directors, Committees are organized to carry out necessary activities of the Society, such as holding the Annual Meeting and publishing the Society’s journal. The Chair of each Committee is appointed by the Board of Directors from among the Regular Members.

Elections of Councilors and Directors
All Regular Members are encouraged to run for and vote in the Councilor election every four year. All Councilors are asked to run and vote (including a vote of confidence) for the Director election every two years. Both will be held in the fall or winter using an electronic election system.

Plan for elections of Councilors, Directors, and President
Results of the 2023 Councilors Election

We are pleased to announce that the following members were elected to the Council through the election held January 23-February 3, 2023 (electronic voting by Regular Members, Overseas Regular Members, Junior Members, and Overseas Junior Members).

(Listed in Japanese syllabary order.)

New Councilors (80 persons)
(Term of office: FY2023 - FY2025)

<table>
<thead>
<tr>
<th>Domain A. Basic Neuroscience (47 persons)</th>
<th>Domain B. Systems & Information Neuroscience (17 persons)</th>
<th>Domain C. Clinical & Pathological Neuroscience (16 persons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natsumi Ageta-Ishihara</td>
<td>Takeo Saneyoshi</td>
<td>Shinsuke Ishigaki</td>
</tr>
<tr>
<td>Yukio Ago</td>
<td>Kazunobu Sawamoto</td>
<td>Kinya Ishikawa</td>
</tr>
<tr>
<td>Aya Ishida</td>
<td>Izumi Sughihara</td>
<td>Kiyoto Kasai</td>
</tr>
<tr>
<td>Hiroshi Ichinose</td>
<td>Yoshiaki Tagawa</td>
<td>Takashi Saito</td>
</tr>
<tr>
<td>Naoyuki Inagaki</td>
<td>Kohtarō Takei</td>
<td>Yuhei Takado</td>
</tr>
<tr>
<td>Takeshi Imai</td>
<td>Sayaka Takemoto-Kimura</td>
<td>Toru Takumi</td>
</tr>
<tr>
<td>Hirohide Iwasaki</td>
<td></td>
<td>Third party</td>
</tr>
<tr>
<td>Kazuo Emoto</td>
<td>Reiko Hanada</td>
<td>Tatsuya Tomita</td>
</tr>
<tr>
<td>Noriko Osumi</td>
<td>Takatoshi Hikida</td>
<td>Yoshitaka Nagai</td>
</tr>
<tr>
<td>Toshihisa Ohtsuka</td>
<td>Hideki Hida</td>
<td>Nobutaka Hattori</td>
</tr>
<tr>
<td>Gen Ohtsuki</td>
<td>Haruhiko Bito</td>
<td>Akiko Hayashi-Takagi</td>
</tr>
<tr>
<td>Hirotaka James Okano</td>
<td>Y. Takeshi Hiyama</td>
<td>Masashi Fujitani</td>
</tr>
<tr>
<td>Yasushi Okamura</td>
<td>Mikio Hoshino</td>
<td>Hideaki Matsui</td>
</tr>
<tr>
<td>Hiroyuki Okuno</td>
<td>Sayaka Hori</td>
<td>Hideki Mochizuki</td>
</tr>
<tr>
<td>Sho Kakizawa</td>
<td>Ko Matsui</td>
<td>Hidenori Yamasue</td>
</tr>
<tr>
<td>Wataru Kakegawa</td>
<td>Masanori Matsuzaki</td>
<td></td>
</tr>
<tr>
<td>Haruyuki Kamiya</td>
<td>Sho Yagishita</td>
<td></td>
</tr>
<tr>
<td>Hiroshi Kawasaki</td>
<td>Masato Yano</td>
<td></td>
</tr>
<tr>
<td>Hiroshi Kuba</td>
<td>Takayuki Yamashita</td>
<td></td>
</tr>
<tr>
<td>Yoshiyuki Kubota</td>
<td>Madoka Yukimoto-Narushima</td>
<td></td>
</tr>
<tr>
<td>Kumi O. Kuroda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tadachika Koganezawa</td>
<td>Yumiko Yoshimura</td>
<td></td>
</tr>
<tr>
<td>Hisatsugu Koshimizu</td>
<td>Michael Lazarus</td>
<td></td>
</tr>
<tr>
<td>Takuya Sasaki</td>
<td>Shuji Wakatsuki</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiroaki Wake</td>
<td></td>
</tr>
</tbody>
</table>

Number of eligible voters : 4,831
Number of voters : 1,470
Voter turnout : 30.4%

These 80 new councilors, plus the 20 previously elected directors, will make a total of 100 councilors of the newly formed general incorporated association. Councilors will have voting rights at the General Assembly (the first assembly is scheduled to take place around May-June 2023) and will participate in the deliberations of the society’s management on behalf of the membership.

The term of councilors is four years, but this time it will be three years due to the transition period, and the next election of councilors is scheduled for 2025.

Election Management Committee
Secretariat of the Japan Neuroscience Society
Please make sure to update your membership information!

Log in to renew your account at:
https://membership.jnss.org/
You will need your membership ID and password to log in.

Member information (profile) update

When there are changes to your affiliation or email address, please update using the following instructions.

1) Log in to the membership website, and click on “MY PAGE” menu item from the "Home" menu on the left side of the page.

2) At the top of "MY PAGE", click on “Profile” (you can view your current profile information).

3) Click on the “Edit Profile” button on the right side of the Profile page; the editing page will appear.

 * The “Edit Profile” button can also be found on the right side of the "MY PAGE". Clicking the button will bring you to the editing page.
 * Profile information is separated into three tabs. Members can only edit items in the “Contact Info” tab; the content of the other two tabs, “Other Info” and “Member History”, are for viewing only.

 * A red *** indicates a required item. Please fill in all the required items.
 * Items that are not editable by members are shown in grey.

4) After updating profile items, make sure to click on the “Save” button at the bottom of the page. Please note that if you do not click the button, your updated profile will not be saved.

Payment of membership fees and withdrawal/leave-of-absence requests can be made through the website for members.
https://membership.jnss.org/C00/login

Membership will be automatically renewed in April of each year unless you request to cancel your membership (except Student Member).

Please select your academic domain!

In the Profile of My Page, the item "Academic Domain" has been added to replace the previous "Panel". Please select an academic domain from among the 3 options (A. Basic Neuroscience / B. Systems & Information Neuroscience / C. Clinical & Pathological Neuroscience) based on the perspective from which you would like to be involved in the society.

The Academic Domain is an important item, as it determines the number of councilors based on its composition, so it is required to be entered. We appreciate your cooperation.
Renewal of Student Member / Overseas Student Member for FY 2023

In order to retain your membership status as a Student Member or Overseas Student Member, you need to renew it annually!!

To Student Members/Overseas Student Members,

If you are still a Student Member/Overseas Student Member for the fiscal year 2023 (April 2023 onward), please submit an official certificate (certificate of enrollment, student ID card, etc.) that confirms that you meet the qualifications for Student Member/Overseas Student Member for the renewal procedure. Please note that if you do not renew your membership, your membership status will be automatically changed to Junior Member/Overseas Junior Member for the fiscal year 2023.

Even if you lose your Student Member/Overseas Student Member status due to graduation or completion of your studies in the middle of the fiscal year, you will be eligible for Student Member/Overseas Young Member status during the fiscal year 2023 if you complete the renewal procedures within this period. However, when attending the Annual Meeting, please pay the registration fee according to your membership status at the time of the meeting, regardless of your membership type.

Period:
March 10, 2023-May 25, 2023 12:00 (noon, JST)

Method:
Please upload a certificate of enrollment or student ID from the website for members.
https://membership.jnss.org/C03/membertype_change/Qm1OU1iBP70=

Note:
Please upload the documents on which the term of validity is visible. In case the term of validity is printed on the backside of your student ID, please also submit a copy of the backside.

If you cannot upload the data from the website, you may send us the re-registration form by e-mail (student-junior@jnss.org). The subject should be: “Re-registration as a Student Member (your membership number: your name)”. The following items 1 to 4 should be described in the body and item 5 should be attached to the e-mail as a scanned data file (PDF, JPEG, GIF, or PNG format, 2MB or below).

1. Name
2. Membership number
3. University and department affiliation
4. E-mail address
5. Certificate of enrollment or a copy of your student ID (the term of validity should be visible)

Send to: student-junior@jnss.org

* Junior Member/Overseas Junior Member
Junior Member and Overseas Junior Member are membership categories designed to support young researchers who have completed graduate school, and the annual membership fee is 6,000 yen (3,000 yen for Overseas Junior Member). If Student Members/Overseas Student Members do not follow the above renewal procedures, they will automatically be changed to Junior Members/Overseas Junior Members for the next five years. Student Members/Overseas Student Members who wish to change to Junior Members/Overseas Junior Members do not need to follow any specific procedures.

Confirmation, change, and withdrawal of your membership
https://membership.jnss.org/C00/login

For inquiries:
The Japan Neuroscience Society
E-Mail: membership@jnss.org

To Student Members/Overseas Student Members,

If you are still a Student Member/Overseas Student Member for the fiscal year 2023 (April 2023 onward), please submit an official certificate (certificate of enrollment, student ID card, etc.) that confirms that you meet the qualifications for Student Member/Overseas Student Member for the renewal procedure. Please note that if you do not renew your membership, your membership status will be automatically changed to Junior Member/Overseas Junior Member for the fiscal year 2023.

Even if you lose your Student Member/Overseas Student Member status due to graduation or completion of your studies in the middle of the fiscal year, you will be eligible for Student Member/Overseas Young Member status during the fiscal year 2023 if you complete the renewal procedures within this period. However, when attending the Annual Meeting, please pay the registration fee according to your membership status at the time of the meeting, regardless of your membership type.

Period:
March 10, 2023-May 25, 2023 12:00 (noon, JST)

Method:
Please upload a certificate of enrollment or student ID from the website for members.
https://membership.jnss.org/C03/membertype_change/Qm1OU1iBP70=

Note:
Please upload the documents on which the term of validity is visible. In case the term of validity is printed on the backside of your student ID, please also submit a copy of the backside.

If you cannot upload the data from the website, you may send us the re-registration form by e-mail (student-junior@jnss.org). The subject should be: “Re-registration as a Student Member (your membership number: your name)”. The following items 1 to 4 should be described in the body and item 5 should be attached to the e-mail as a scanned data file (PDF, JPEG, GIF, or PNG format, 2MB or below).

1. Name
2. Membership number
3. University and department affiliation
4. E-mail address
5. Certificate of enrollment or a copy of your student ID (the term of validity should be visible)

Send to: student-junior@jnss.org

* Junior Member/Overseas Junior Member
Junior Member and Overseas Junior Member are membership categories designed to support young researchers who have completed graduate school, and the annual membership fee is 6,000 yen (3,000 yen for Overseas Junior Member). If Student Members/Overseas Student Members do not follow the above renewal procedures, they will automatically be changed to Junior Members/Overseas Junior Members for the next five years. Student Members/Overseas Student Members who wish to change to Junior Members/Overseas Junior Members do not need to follow any specific procedures.

Confirmation, change, and withdrawal of your membership
https://membership.jnss.org/C00/login

For inquiries:
The Japan Neuroscience Society
E-Mail: membership@jnss.org
We Welcome Submissions to Neuroscience News

Please submit articles that make a positive contribution to the development of neuroscience, such as proposals to the Society, comments on neuroscience, meeting reports, and book reviews. Submissions should conform to the requirements noted below. The mailing of the printed version of Neuroscience News has been discontinued after No. 4 of 2021. Since then, an all-color PDF version has been posted on our website. Please download and view them from the following link. https://www.jnss.org/en/neuroscience_news

1. Manuscripts should be sent in the form of an electronic file which complies with the following file format requirements as email attachments to the following email address: newsletter@jnss.org
 a. Manuscript texts should be prepared in MS Word format. Images such as photos and figures should not be embedded in the main body of the manuscript. Send the original files of images separately from the text file.
 b. Images should be in the format of JPEG, TIFF, etc. and have enough resolution, up to 300 pixels or so per inch. Also, the images need to be compressed so that they can be sent by email. Their preferable size is up to about 2 MB to 3 MB per image, which is only as a guide.

2. An article should be compiled in one or two pages of the newsletter. (In the case of requested manuscript, please ask the person who requested it about the required number of the pages.)

 Maximum number of alphanumeric characters per page(s):
 1 page: 4300 characters, 2 pages: 9500 characters

 An image is counted as alphanumeric characters based on the following criteria. Please specify which size you desire to have each image placed in when submitting images.

 The size of images (width and length) and the number of alphanumeric characters replaced:

 Small (① 8cm x 6cm): 660 characters
 Medium (② 8cm x 12cm) or (③ 16cm x 6cm): 1,350 characters
 Large (④ 16cm x 8cm): 1,800 characters

3. As a rule, replacement of manuscripts is not allowed after submission; it is thus your own responsibility to ensure that they do not contain any errors or mistakes. Please note that the Neuroscience News Editing Committee may ask the authors to revise their documents in certain cases.

4. The Neuroscience News Editing Committee will decide the acceptance and timing of publication of submitted manuscripts, depending on their contents.

5. The date of issue of the Neuroscience News and the deadline for the manuscript submission for each issue are usually as follows; however, these dates are subject to change. Please contact the secretariat for the exact dates.

Date of issue and the submission deadline:
(Thesubmission deadline is noted in parentheses.)
February 10th issue (Early December)
April 10th issue (Around the end of January)
July 10th issue (Around the end of April)
November 10th issue (Around the end of August)

6. There is no charge for publication of submissions in Neuroscience News. In principle, the authors of the articles should be members or supporting members of the Japan Neuroscience Society.

Information regarding job vacancies, academic meetings, symposiums, and subsidies will be posted on the website of the Japan Neuroscience Society. Please see https://jnss.org/en/submissions

The Japan Neuroscience Society now has an official Facebook page and an official Twitter account. We will provide various latest information, such as upcoming events and open recruitment.
Find us on Facebook or Twitter.

facebook.com/JapanNeuroscienceSociety
twitter.com/jnsorg (@jnsorg)
宿泊のご案内
大会 HP（https://neuroscience2023.jnss.org/accommodation.html）にて、宿泊予約を受け付けております。本大会の直後には仙台七夕まつり（8月6日〜8日）が行われることもあり、混雑が予想されます。お早めの宿泊予約をお勧めいたします。

プログラム概要
■シンポジウム
（タイトル、日時、会場、オーガナイザー）

-------- 8月1日（火）--------
Investigating major neuromodulatory systems in mice at circuit and cellular levels.
08:45-10:45 第1会場
佐藤 隆、Tianyi Mao

複雑な行動を実現する活動期と休息期の脳機能とその神経基盤
08:45-10:45 第2会場
清水 貴美子、林 悠

多感覚統合による知覚・行動変容にかかわる分子・神経回路機構
08:45-10:45 第4会場
廣川 純也、眞部 寛之

価値の脳内情報処理：単純な情動から計算論的神経科学へ
08:45-10:45 第5会場
鈴木 直輝、Aaron Gitler

解明がされてきたALS/MNDの分子病態：異分野融合の成果
08:45-10:45 第6会場
鈴木 直輝、Aaron Gitler

第46回日本神経科学大会
- Towards the Galaxy of Neuroscience -
部分と全体の因果循環から脳機能を読み解く基盤技術を目指
してマルチスケール計測
08:45-10:45 第1会場
坂本 一寛、虫明 元
脳情報通信のための Brain-Machine Interface
14:00-16:00 第2会場
柳澤 琢史、金井 良太
脳回路と機能を明らかにする細胞センサス
14:00-16:00 第3会場
中嶋 藍、有村 奈利子
生体の機能発現と病態形成におけるドーパミンの役割の諸相
の統合的解釈と共通原理の探索
14:00-16:00 第4会場
井口 善、Louis-Eric Trudeau
超適応の新たな地平線
14:00-16:00 第5会場
今水 寛、美馬 達哉
Cell-type-specific roles for acetylcholine in the CNS
14:00-16:00 第6会場
Helena Janickova
加齢と神経変性疾患における神経ホメオスタシス制御の最前線
14:00-16:00 第1会場
川端 伊知郎、デイビッド・フィンケルシュタイン
死の脳内表象：「死」はどのように認識されるのか？
17:00-19:00 第2会場
奥山 輝大、竹内 春樹
海馬における情報処理の回路・細胞・シナプス・分子機構
17:00-19:00 第3会場
喜田 聡、Paul Frankland
日本ー中国合同シンポジウム 神経発生生物学の新たなフロンティア
17:00-19:00 第4会場
見學 美根子、李卫东
ヒト・げっ歯類・鳴禽類の音声コミュニケーション発達と社会的学習
17:00-19:00 第5会場
田中 雅史、橋 亮輔
日本神経科学学会（JNS）／国際脳研究機構（IBRO）共同企画ワークショップ
The Hows and Whys of Publishing in a Society Journal: Conversation with the editors of Neuroscience Research (JNS) & Neuroscience (IBRO)
17:00-19:00 第6会場
Thomas McHugh、Jerome Sanes
社会行動の変容にかかわる神経生物学
17:00-19:00 第1会場
高橋 友貴、ルッソ スコット

-------- 8月2日（水）--------

レム睡眠の機能・制御・進化
8:45-10:45 第2会場
坂口 昌徳、樫井 武
多脳器連携を制御する神経回路と分子メカニズム解明を目指して
8:45-10:45 第3会場
松田 恵子、丸山 健太
心身ネットワークの解明に向けたマルチスケール・マルチモードのアプローチ
8:45-10:45 第4会場
小山内 実、戴 毅
「倫理」だけでなく...ニューロテクノロジーの持続可能な発展に向けて
8:45-10:45 第5会場
福士 理美
Molecular properties driving synapse formation and sexual dimorphism in neural circuitry.
8:45-10:45 第6会場
Katsuhiro Tabuchi、Jason Aoto
脳機能操作による拡張脳の実装
8:45-10:45 第1会場
松井 広、髙松文裕
Gliodecoding and brain functions
14:00-16:00 第2会場
小泉 修一、和氣 弘明
神経ネットワークによる脳器連関システムが担う生体の恒常性維持機構とその破綻
14:00-16:00 第3会場
田辺 章悟、國石 洋
性差に着目した神経科学研究最前線
14:00-16:00 第4会場
大隅 典子、西城 薫
Action を創り出す大脳皮質 - 基底核回路 - 意思決定から身体運動まで
14:00-16:00 第5会場
青木 祥、瀬戸川 将
産学連携シンポジウム
信頼される脳科学研究技術による社会への貢献を考える
14:00-16:00 第6会場
松元 健二、茨木 拓也
Axon Initial Segment：分子構築とその病態での動態
14:00-16:00 第1会場
岡村 康司、久場 博司

-------- 8月3日（木）--------

神経科学のフロンティアは切り拓かれているか?
08:45-10:45 第1会場
下部 智美
脳科学および工学技術の融合によるこころへのアプローチの最先端
08:45-10:45 第2会場
佐々木 拓哉、山田 真希子

疾患横断的アプローチより迫る精神疾患病態生理の新潮流
08:45-10:45 第3会場
橋本 亮子、林（高木） 朗子

脳機能発現の基盤となるゲノム、エピゲノム制御
08:45-10:45 第4会場
佐々木 拓哉、藤田 幸

Cross-species mechanisms of learning and adaptive behaviour
08:45-10:45 第5会場
Tom Macpherson、Aurelio Cortese

神経変性疾患における中枢－末梢病態連関
08:45-10:45 第6会場
勝野 雅一、藤山 文乃

オープンアクセス化とその課題から紐解く科学と論文の未来
08:45-10:45 第10会場
大隅 典子、林 和弘

記憶回路における感覚情報から記憶情報への変換
14:00-16:00 第2会場
大原 慎也、Sylvia Wirth

なぜその行動を選ぶのか？—意思決定を担う神経回路研究の最先端—
14:00-16:00 第3会場
小川 正晃、濱口 航介

社会行動と自閉症の神経科学
14:00-16:00 第4会場
内匠 透、Eunjoon Kim

大脳基底核ネットワークにおける構造・機能の新しい知見と今後の展開
14:00-16:00 第5会場
加藤 成樹、藤山 文乃

エルゼビア／NSR シンポジウム
ピックデータは神経科学を変ええるのか？
14:00-16:00 第6会場
小林 亮、中江 健

神経科学研究の動向と今後の発展の方向性
17:00-19:00 第1会場
松田 哲也、渡部 文子

老化脳の機能再生を目指す分子と場の理解
17:00-19:00 第2会場
澤本 和延、小林 俊子

大規模計測とシミュレーションの統合による脳の全体性の解明
17:00-19:00 第3会場
平 理一郎、堤 新一郎

若手研究者が考える基礎臨床連携研究とは？
17:00-19:00 第4会場
橋本 亮太、橋本 均

神経機能操作を実現する材料科学・分子技術との融合
17:00-19:00 第5会場
味岡 逸樹、武内 恒成

超音波刺激の基礎と臨床
17:00-19:00 第6会場
寺尾 安生、花島 律子

--------- 8月4日（金）---------

ムーンショットプログラムにおける脳研究
09:00-11:00 第1会場
岡井 健一郎

認知症研究最前線
09:00-11:00 第2会場
斎藤 賢志、横田 人

大脳皮質 GABA 抑制回路のインタラクティブ形成
09:00-11:00 第3会場
三好 悌一、谷口 弘樹

神経・免疫・内分泌の連動：日常を平穏に暮らすためのヒント
09:00-11:00 第4会場
尾仲 達史、片山 義雄

Approaching precision medicine: critical cell types and developmental periods of genetically-identifiable neurodevelopmental disorders
09:00-11:00 第5会場
Noboru Hiroi、Brady J. Maher

慢性疼痛の成立と回復に直結する構造・分子的可塑性
09:00-11:00 第6会場
津田 道、Xiaoke Chen

網膜視覚情報処理：現代システム神経科学技術を用いた多角的アプローチによる知見と展望
09:00-11:00 第7会場
浅利 宏紀、Wei Wei

Magnetic resonance- 物理と神経科学の共鳴、そして病態科学へ
09:00-11:00 第8会場
領家 梨恵、釣木澤 朋和

神経科学における自動ホームケージ内行動解析の基礎・応用・未来
09:00-11:00 第9会場
遠藤 俊裕、王 丹

※プレナリーレクチャー、Brain Prize Lecture、特別講演、その他、最新のプログラムについては、大会 HP（https://neuroscience2023.jnss.org/program.html）をご覧ください。

第46回日本神経科学大会 運営事務局
株式会社エー・イー企画
TEL：06-6350-7163
FAX：06-6350-7164
E-mail：jns2023@aeplan.co.jp
一般社団法人 日本神経科学学会が発足しました

日本神経科学学会は、1974 年の設立以来、法人格を持たない「任意団体」として活動してきましたが、2023 年 4 月 1 日を以て一般社団法人として再出発することとなりました。財務等の引き継ぎのために 2023 年度一杯は任意団体も存続しますが、5 ～ 6 月に予定されている総会での承認を経て法人の新理事長（会長）が選任されます。新理事長選挙の結果は別途お知らせいたします。

法人化は対外的な信用性を向上させるのみでなく、学会運営の公正性・透明性が確保されるために必要です。さらに将来的には、一般社団法人を経て公益社団法人となることによって、公益のための収益事業も行い、財政基盤の強化を図りたいと考えています。法人化に当たって、本学会の設立以来大きな変更がされていなかった会則についても、さまざまな改革を行いました。より多くの専門領域・性別・年代・地域の会員を取り込み、かつより幅広い会員の声を学会運営に反映させることを目指して、評議員制度の導入や理事・会長の選考方法が新しくなっています。この過程において、総会やアンケート等にて、さまざまなご意見をお寄せいただいた会員の方々、そして法人化と会則改正作業に携わっていただいた理事会 Working group や執行部・事務局の方々に改めて深く感謝の意を表したいと思います。

とはいえ仏に魂を入れるのは会員の皆様です。今後も日本の神経科学がより進展していくことを目指して、会員の皆様がそれぞれの研究・教育成果を挙げるとともに、日本神経科学学会の運営にも引き続き貢献していただけることをお願いいたします。
一般社団法人 日本神経科学学会の運営制度について

日本神経科学学会
前庶務理事 礒村 宜和

日本神経科学学会は会員数5,000名以上を擁する国内有数の神経科学分野の学術団体です。神経科学の将来を見据えた一般社団法人の設立により学会運営の仕組みが大きく変わりました。

学術ドメイン制度の導入
会員の皆様には、A.基礎神経科学、B.システム・情報神経科学、C.臨床・病態神経科学の学術ドメインのいずれかを選択していただきます。評議員や理事の定数内訳は、選挙前に調査する学術ドメインの構成比をもとに比例配分で定められます。

評議員の役割
評議員（約50〜200名）は正会員（約4,800名：正会員、海外正会員、若手会員、海外若手会員を含む）のなかから正会員による選挙により選出され、一般社団法人の社員として社員総会における重要な議決に参加します。任期は4年です（任期のみ3年）。

理事の役割
理事（20名）は評議員のなかから評議員による選挙により事前に選出され、社員総会での承認を経て就任し、理事会において学会運営に関わる主要な事項を決定します。運用上、任期は連続2期計4年を単位とし、10名ずつの半数改選により学会運営の連続性を保ちます。任期2期目の再任にあたっては信任投票を受けることとなります。また、理事とは別に監事2名が置かれます。

理事長の役割
理事長は理事の中から理事による選挙により事前に選出され、社員総会での承認を経て就任し、理事会を中心とする学会運営を主導します。運用上、任期は連続2期計4年を期待されます。

各種委員会の役割
理事会の下に年次大会の開催や機関誌の発行などさまざまな学会活動を担う委員会が設けられます。それぞれの委員長は正会員のなかから理事会により選任されます。

評議員と理事の選挙
正会員の皆様には4年ごとに評議員選挙の立候補と投票をお願いいたします。評議員の皆様には2年ごとに理事選挙の立候補と投票（信任投票を含む）をお願いいたします。いずれも秋〜冬頃に電子選挙システムを使って実施される予定です。
2023 年度 評議員選挙 結果公表

2023 年 1 月 23 日～2 月 3 日に実施された選挙（正会員、海外正会員、若手会員、海外若手会員による電子投票）により、次の会員が評議員に選出されました（各五十音順・敬称略）。

■新評議員（80 名）（任期：2023 年度～2025 年度）

<table>
<thead>
<tr>
<th>ドメイン A</th>
<th>ドメイン B</th>
<th>ドメイン C</th>
</tr>
</thead>
<tbody>
<tr>
<td>基礎神経科学 (定員 47 名)</td>
<td>システム・情報神経科学 (定員 17 名)</td>
<td>臨床・病態神経科学 (定員 16 名)</td>
</tr>
<tr>
<td>上田 (石原) 奈津実</td>
<td>実吉 岳郎</td>
<td>石垣 診祐</td>
</tr>
<tr>
<td>吾郷 由希夫</td>
<td>澤本 和延</td>
<td>石川 欽也</td>
</tr>
<tr>
<td>石田 紘</td>
<td>杉原 泉</td>
<td>杉井 清登</td>
</tr>
<tr>
<td>一瀬 宏</td>
<td>田川 義晃</td>
<td>齊藤 貴志</td>
</tr>
<tr>
<td>稲垣 直之</td>
<td>竹居 光太郎</td>
<td>高堂 裕平</td>
</tr>
<tr>
<td>今井 真</td>
<td>竹本 さやか</td>
<td>内匠 透</td>
</tr>
<tr>
<td>岩崎 広英</td>
<td>竹村 文</td>
<td>竹内 英之</td>
</tr>
<tr>
<td>櫛本 和生</td>
<td>筒井 健一郎</td>
<td>築地 仁美</td>
</tr>
<tr>
<td>大隅 典子</td>
<td>中村 加枝</td>
<td>富田 泰輔</td>
</tr>
<tr>
<td>大塚 積久</td>
<td>中村 克樹</td>
<td>永井 義隆</td>
</tr>
<tr>
<td>大槻 元</td>
<td>萩原 英雄</td>
<td>服部 信孝</td>
</tr>
<tr>
<td>岡野 ジェイムス 洋</td>
<td>星野 幹雄</td>
<td>林 朗子</td>
</tr>
<tr>
<td>岡村 優</td>
<td>堀 沙耶香</td>
<td>藤谷 昌司</td>
</tr>
<tr>
<td>大川 來也</td>
<td>松井 広</td>
<td>松井 秀彰</td>
</tr>
<tr>
<td>椠川 渉</td>
<td>松崎 政紀</td>
<td>望月 秀樹</td>
</tr>
<tr>
<td>稲谷 温之</td>
<td>柳下 祥</td>
<td>山末 英典</td>
</tr>
<tr>
<td>河崎 洋志</td>
<td>矢野 真人</td>
<td>有権者数（正会員群）: 4,831</td>
</tr>
<tr>
<td>久場 博司</td>
<td>山下 貴之</td>
<td>投票者数：1,470</td>
</tr>
<tr>
<td>窪田 芳之</td>
<td>行本（鷹島）円</td>
<td>投票率：30.4%</td>
</tr>
<tr>
<td>黒田 公美</td>
<td>吉村 由美子</td>
<td></td>
</tr>
<tr>
<td>小金澤 祐史</td>
<td>ミハエル・ラザルス</td>
<td></td>
</tr>
<tr>
<td>小清水 久嗣</td>
<td>若月 修二</td>
<td></td>
</tr>
<tr>
<td>佐々木 拓哉</td>
<td>和気 弘明</td>
<td></td>
</tr>
<tr>
<td>和泉 内</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 這些の新評議員 80 名と、先に選出された理事 20 名の合計 100 名が、新しく設立された一般社団法人の評議員となります。評議員は社員総会（初回は 2023 年 5～6 月頃に実施予定）において議決権を有し、会員を代表して本学会運営上の審議に参加していただくことになっています。

なお、評議員の任期は 4 年間ですが、今回は移行期のため 3 年間とし、次回の評議員選挙は 2025 年を予定しています。
新年度から所属などが変更になる方へ
会員情報の更新をお忘れなく！

新年度から所属が変更になる方は、下記の会員専用サイトで会員情報の更新をお願いいたします。

https://membership.jnss.org/
※ログインにはID（会員番号）とパスワードが必要です。

会員情報（プロフィール）の更新
所属先やE-mailアドレスが変更になった場合は、以下の方法で情報を更新して下さい。

① 会員サイトにログイン後、画面左上の「会員専用」メニューの「マイページ」をクリック。

② マイページのトップ画面で、「プロフィール」をクリック（登録されているプロフィール情報が閲覧できます）。

③ プロフィール画面の右上の「プロフィールの編集」ボタンをクリックすると、編集画面に変わります。

※上記②のマイページトップ画面にも、画面右側に「プロフィールの編集」ボタンがあるので、これをクリックすると、すぐに編集画面に変わります。

※プロフィール情報は3つのタブに分かれています。会員ご自身が内容を編集できるのは、「Contact Info」タブ内の項目のみで、「Other Info」タブ内の一部と「Member History」タブの内容は閲覧専用です。

※赤い「*」マークが付いているのはシステム上の入力必須項目です。「*」マークのもの、または「入力必須」と書かれている項目には、必ず入力してください。

 ※会員ご自身で編集できない項目はグレーになっています。

④ プロフィール項目を更新したら、画面下の「保存」ボタンを必ずクリックして下さい。クリックしないと保存されませんのでご注意下さい。

年会費のお支払い、退会・休会の申請は会員サイトから手続きいただけます。
https://membership.jnss.org/C00/login

学術ドメインの選択をお願いします！

マイページのプロフィールにあった従来の「パネル」という項目に代わり、「学術ドメイン」が追加されました。3つの選択肢（A. 基礎神経科学／B. システム・情報神経科学／C. 臨床・病態神経科学）の中から、ご自身がどの立場から学会に関与したいかという観点に基づいて、学術ドメインを選択して下さい。

学術ドメインは、その構成比に基づいて評議員の定数を決めるなど重要な項目ですので、入力必須となっています。ご協力をお願いいたします。
学生会員／海外学生会員の皆さんへ

2023年度（2023年4月以降）も学生会員／海外学生会員に該当する方は、更新手続きのため、学生会員／海外学生会員の資格を満たしていることが確認できる公的証明書（在学証明書、学生証等）をご提出ください。更新手続きをしないと、2023年度の会員種別は自動的に若手会員／海外若手会員に変更されますのでご注意ください。

なお、年度の途中で卒業・修了により学生会員／海外若手会員の資格を失う方でも、期間内に手続きをすれば、2023年度中は学生会員／海外若手会員となります。ただし年次大会参加の際には、会員種別に関わりなく、大会開催時点でその身分にあわせた参加登録費をお支払いただく。

更新期間
2023年3月10日（金）～2023年5月25日（木）正午（日本時間）

手続き方法
会員サイトにログインし、在学証明書または学生証をアップロードしてください。

https://membership.jnss.org/C03/membertype_change/Qm1OU1lbPT0=

注意事項
在学証明書もしくは学生証は、有効期限が確認可能なものをご提出ください。学生証の場合、有効期限が裏面に記載されていることがあります。その場合には裏面もあわせてご提出ください。

上記サイトで手続きができない場合のみ、メールでも受け付けます（送付先:student-junior@jnss.org）。件名を「学生会員再登録（会員番号：氏名）」とし、下記1〜4をメール本文に記載し、5をスキャンして電子データ化したファイル（PDF、JPEG、GIF、PNG、2MB以内）を添付してください。

1. 氏名
2. 会員番号
3. 所属
4. E-mail address
5. 在学証明書、もしくは有効期限が確認可能な学生証

提出先
student-junior@jnss.org
※件名は「学生会員再登録（会員番号：氏名）」

※若手会員／海外若手会員について
若手会員／海外若手会員は、大学院修了後の若手研究者を支援するための会員カテゴリーで、年会費は6,000円（海外若手会員は3,000円）です。学生会員／海外学生会員が上記の更新手続きをしないと、その後5年間は自動的に若手会員／海外若手会員に変更となります。学生会員／海外若手会員への変更を希望する学生会員／海外学生会員は、特に手続きは必要ありません。

会員情報の確認・変更・退会・休会はこちらから
https://membership.jnss.org/C00/login

問い合わせ先
〒113-0033
東京都文京区本郷7丁目2-2 本郷ビル9F
日本神経科学学会事務局
TEL: 03-3813-0272
FAX: 03-3813-0296
E-MAIL: membership@jnss.org
はじめに

2021年8月から熊本大学発生医学研究所ゲノム神経学分野教授職を拝命しました。熊本大学発生医学研究所は熊本市の中心部に隣接している本荘キャンパスにあります。歩いて数分のところでおいしい食事とお酒が楽し、少し足を延ばせば近くに阿蘇や温泉、海など自然があって、息抜きができる素晴らしい地方です。研究室内は、研究同士の交流が日頃から盛んに行われ、風通しの良い環境です。研究所内では皆、「いかに良い研究をするか」という目的のため、毎月、研究支援会議や情報交換会を行います。ほぼ毎週、学外の最先端の研究者による講演も開催されます。研究所内の大きなイベントとして、毎年1回、BBQパーティー、隔年1回のサマーリトセミナーが催され、分野・年齢の枠を超えた交流があります。

発生医学研究所は、分子遺伝学・分子生物学・細胞生物学などを基盤として発生学的視点から生命科学と医学を融合する「統合的な研究推進」を目的としています。発生制御部門・幹細胞部門・器官構築部門の3部門があり、現在14の専任分野、2つの客員分野、1つの研究担当が設置されています。附属施設のコアファシリティーとして「リエゾンラボ研究推進施設」があり、最新の研究機器と熟練した技術支援員が配置され、大学院生・若手研究者・来所する共同研究者に多岐に渡るサポートを行っています。基盤は分子生物学・生化学になりますが、1つの研究テーマを進めるに連れて多面的な解析が進むので、研究過程で面白い発見がたくさんあります。インプット側である核酸高次構造を解析するには、CDスペクトル測定、一塩基決定用の長いゲル板での電気泳動、構造の基になる一次配列のゲノム解析などを行います。アウトプット側の脳機能は、主に電気生理解析、神経形態解析、マウス行動解析からなります。研究室の学生さんたちは、まず分子生物学・生化学の基礎実験を習得しつつ、上記のような専門的な研究テーマに挑戦していきます。大事なことは「好奇心を持って、楽しく取り組むこと」ですので、その場所を提供するのが私の役割だと思っています(私も研究室メンバー以上に楽しみますが)。良い場が良い人材を育てると信じています。

現在、ゲノムと脳の記憶・個性に興味を持って研究しています。個体のゲノム DNA は自然に変異を蓄積し、これにより個体の多様化が起こります。環境に適応した個体が選択されると多様性は低下し、新しい性質が共通の性質になります。つまり、多様化的増減を繰り返す過程が「進化」です。全てのゲノム DNA は何十億年以上の生命誕生まで遡ることができ、ゲノム DNA に蓄積された核酸高次構造体の脳機能における役割の解明を急いでいます。「病態」の視点から、核酸構造異常に起因した神経疾患に着目し、疫病モデルマウスの脳神経を多角的に解析しています。また、「個性・生理」の視点から、「核酸構造」と「学習・記憶などの脳機能」の関与を研究しています。研究室メンバーは自身も含め現在12名で（助教1名、日本学術振興会特別研究員PD1名、大学院生3名、学部生6名）、皆で楽しみに研究に励んでいます。

研究テーマへの取り組み

現在の研究テーマとして、核酸高次構造をインプット、脳機能の解明をアウトプットにしているので、解析手法がゲノム解析・生物物理学・核酸化学から神経生理学、マウス行動解析まで多岐に渡ります。基盤是分子生物学・生化学になりますが、1つの研究テーマを進めるに連れて多面的な解析が進むので、研究過程で面白い発見がたくさんあります。インプット側である核酸高次構造を解析するには、CDスペクトル測定、一塩基決定用の長いゲル板での電気泳動、構造の基になる一次配列のゲノム解析などを行います。アウトプット側の脳機能は、主に電気生理解析、神経形態解析、マウス行動解析からなります。研究室の学生さんたちは、まず分子生物学・生化学の基礎実験を習得しつつ、上記のような専門的な研究テーマに挑戦していきます。大事なことは「好奇心を持って、楽しく取り組むこと」ですので、その場所を提供するのが私の役割だと思っています（私も研究室メンバー以上に楽しみます）。良い場が良い人材を育てると信じています。

現在、ゲノムと脳の記憶・個性に興味を持って研究しています。個体のゲノム DNA は自然に変異を蓄積し、これにより個体の多様化が起こります。環境に適応した個体が選択されると多様性は低下し、新しい性質が共通の性質になります。つまり、多様化の増減を繰り返す過程が「進化」です。全てのゲノム DNA は何十億年以上の生命誕生まで遡ることができ、ゲノム DNA に蓄積された核酸高次構造体の脳機能における役割の解明を急いでいます。「病態」の視点から、核酸構造異常に起因した神経疾患に着目し、疫病モデルマウスの脳神経を多角的に解析しています。また、「個性・生理」の視点から、「核酸構造」と「学習・記憶などの脳機能」の関与を研究しています。研究室メンバーは自身も含め現在12名で（助教1名、日本学術振興会特別研究員PD1名、大学院生3名、学部生6名）、皆で楽しみに研究に励んでいます。
過去の記憶はゲノムの個性と言えます。
しかしながら、個体の全ゲノム DNA を解読したとしても全ての個性を同定できません。なぜなら、個体は様々な経験を通じて、ゲノムでは決まらない個性を作り上げていくからです。言い換えると、「経験」が「記憶」され、その「記憶」が「個性」となります。記憶は記録された情報ではなく、経験、記録、呼び起こしという順序で進む一連の過程です。この時の脳における記憶媒体は、「ゲノム DNA・RNA 高次構造」と「神経ネットワーク」の両方からできていると考えています。

神経細胞は、通常の体細胞とは異なるレベルの情報システムを形成しています。この情報システムは、神経細胞同士の階層的なネットワークや回路を基盤にしていますが、ゲノム DNA・RNA 高次構造と密接な相互依存関係にあります。神経細胞以外の体細胞では、個々の細胞に蓄積した様々なゲノム DNA・RNA 高次構造の変化が集合し、その記憶が個性（脳器や個体の機能）として表現されます。しかしながら、この体細胞の個性は単なる「集合体」であり、「統合」されることはありません。一方、神経細胞では、細胞レベルのゲノム DNA・RNA 高次構造の変化に起因する個性が神経回路の「高い自立性」と「興奮伝達の共通原理」によりネットワークとして共有され、「統合」されます。さらに、神経ネットワークを起点として他の多くの体細胞も統合されます。また、神経ネットワークは、外部刺激によるシナプス結合の特異性や強さを変化させるためにゲノム DNA・RNA 高次構造に依存したメカニズムを用います。つまり、「経験」による神経細胞の「個性」がネットワーク全体の「個性」として「記憶」・「統合」されると考えています。

長々と述べましたが、基本理念として「自由で、とらわれない発想から研究すること」をモットーにしています。現在のテーマ「ゲノム DNA・RNA 高次構造」と「脳の個性・病態」に少しでも興味のある方、一緒に楽しく研究してくれるチャレンジ精神溢れる学生さん・共同研究者を募集中ですので、お気軽にお問い合わせください。

ラボメンバーと発生研の桜の木の前にて（2022年4月某日）
吾輩は PI である。ラボはまだ無い

2022 年 9 月より東京大学理学部生物化学科の教授に着任しました。博士号を取得してから限期付きポストを渡り歩くこと十数年、ようやく腰を据えて研究ができる環境に恵まれたことを嬉しく思うと共に、これまでサポー

tしてくださった方々にこの場を借りて深く感謝致します。

私の所属する生物化学科（通称 生化）は、基盤となる研究室がかつと規模が比較的小さいのですが、これまで多く著名な生命科学の研究者を輩出し、日本のライフサイエンスを支えてきた歴史と伝統のある学科です。また、ここは私の卒業学科でもあり、こうして戻ってこられたことを感慨深く思うとともに、歴代の先生方の思いや功績に恥じぬよう、今後も精一杯研究に精進する決意を固めています。

さて、はじめに私のこれまでの研究歴をご説明したいと思います。私は、生物化学科を卒業後、大学院はそのまま生物化学専攻（現在の生物科学専攻）へと進み、当時の神経科学の研究室主宰者であられた坂野 仁先生の薫陶を受けました。坂野先生はノーベル賞を受賞された利根川 進先生と免疫グロブリン遺伝子の DNA 組換えの研究で数々の業績を上げたのち、カリフォルニア大学のバークレー校の教授として研究室を主宰された経験を持つわゆる国際派です。なぜ坂野研究室を選んだのかということについては、はるか昔のことで明確な理由は定かでないですが、研究内容で選んだわけではなかったと思思います。なにせ当時の私は、サッカーサークルの活動に明け暮れ、不勉強もあり、所属研究室を研究内容で選べるほど生命科学の知識がありませんでした。だから、なんとなくただならぬ風貌と雰囲気を醸し出した坂野先生のオーラに魅かれて、「こんな面白そうな先生がいることは面白いに違いない」、その程度の考えで坂野研究室の門を叩きました。実際に、坂野先生はとてもユニークで、己の人生をすべてサイエンスに捧げている先生でした。サイエンスに対しては誰よりも真摯で厳格であるにも関わらず、データさえ出していれば、他は何をやっていてもいいというような先生でした。私はそんな厳しくも自由な環境でご指導いただきました。坂野先生からは、具体的な実験手法や科学的思考というより、研究の本質や科学者としての生き様を教示しました。良い研究、ダメな研究とはどういうものか？そして、良い研究をす

tるためには研究者はどうあらねばならないか？など、科学者として向かうべき方向性を厳しく指導されました。「実験で自分がボロボロの雑巾のようになるまで打ちのめされた後、そのボロ雑巾を引っ張って進むのもまた自分」、「大学院時代は、地獄の釜の底を疫いてくる必要がある」、「まずラボに住んで、人の三倍働いてみるわけではないが、自分が何者であるかをわからならない」、坂野先生の口から発せられる数多くの決まり文句は、もはや坂野語録として私の心に刻み込まれています。当時は論文を出すた

めのこともと具体的な助言をしてほしいと思っておりましたが、この時に研究者として生き残っていくための心根が鍛えられたと思っています。今からもう一度同じ大学院生活をやりたいとは全く思いませんが、人生一回限りの大変得難い経験をさせていただいたことに感謝しています。その後、なんとか坂野研究室で学位を取得し、先生の東京大学退官に伴って福井大学へ一緒に異動し、研究所の立ち上げに関わりました。坂野研究室在籍時には、主に分子生物学的手法を用いて神経回路形成機構に関する研究を行ってきましたが、さきがけ「細胞機能の構成的な理解と制御」（上田泰己領域総括）に採択されたことを契機に電気生理学的手法を習得したいと思うようになりました。さきがけ同期の稲木亮介先生（生理学研究所）の紹介で PI である。ラボはまだ無い
介もあって、東京大学大学院薬学系研究科の池谷裕二先生の研究室に入れていただけることになりました。池谷先生は、多数の著書がベストセラーとなっていることからも、難しいことを過不足なく本当にわかりやすく人に伝えることができる先生です。池谷先生のサイエンスに対する純粋な好奇心とユーモアあふれるトークによって、池谷研究室は先生を慕って全国からたくさんの大学院生が集まる非常に大きな研究室でした。私の在籍時には、常時40人、最高で50人を超える構成員がいたと記憶しています。池谷先生は、研究活動に加え、様々なアウトリーチ活動もあり多忙を極めていらっしゃったにもかかわらず、学生一人一人とのミーティングを欠かさず、学生のプロジェクトをすべてご自身で把握しておられました。私は、池谷先生の頭の回転の速さと巧みなやりかたに圧倒され、このラボ運営はとても自分が真似できないものではないということに気づき、このラボ運営を受けて、自分もラボ運営をするという決意を固めたのです。現在の研究室 R5.1.30 撮影
留学記

カナダ・オンタリオ州での研究生活

The University of Western Ontario, Robarts Research Institute
Postdoctoral Fellow 五十嵐 敬幸

留学の経緯

2014年3月鹿児島 - 当時博士課程に入りたての私は、ポスター発表のために参加した第91回日本生理学会で現在のポスである井上渉先生の口演を聴講していました。井上先生はカナダのマギル大学でPh.D.を取得後、カルガリー大学のJaideep Bains先生の下でポスドクを経験され、ちょうど独立されるあたりでシンポジストとして発表されていました。視床下部室傍核に局在する内分泌神経細胞に焦点を当て、仮説に沿って電気生理学的手法とオプトジェネティクスを組み合わせた実験結果を活き活きと話されている姿が印象的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソースの開発と応用をしていた私は、新しいツールをどのように自律生理機能の解明に結び付けるか、そして自分が博士号を取った後「自分がしたい研究とは？」と自問していた時期でした。そこで目に入った、古くからよく知られているように、技術的困難から未だ基本的に問が残されている神経内分泌学は、自分が進んでいく道としてはとても魅力的でした。当時、東北大学八尾浩先生の下でオプトジェネティクスツール・リソーショ
見えています。カナダの大学院では、大学院生に対してラボ の主宰者（PI）からお給料が出ます。したがって、PI は学生 の受け入れに非常に慎重ですし、その選抜を抜けた学生は、 研究に対するモチベーションが高い印象です。もし経済的理 由から進学をためらっているが、サイエンスへの情熱をお持ち の学生方はカナダでの大学院進学を選択肢の一つとして 検討してみてはいかがでしょうか。

西オンタリオ大学での研究生活

井上研究室は生理薬理学部門に属し、ロバーツ研究所と いうきれいな研究棟の 7 階にあります。入った時は 10 人に 満たない小さなラボでしたが、今では倍くらいになっています。 そこで私はストレス応答の起点となるコルチコトロピン放出 ホルモン（CRH）を放出する神経細胞に着目し、神経発火と ホルモン放出の量的関係を調べています。ストレスによって 惹起された神経活動は室傍核の CRH 神経細胞に集約されて 内分泌応答に変換されるため、この神経活動・放出関連の 理解が「ストレスを感じるとはどういうことなのか？」という 問いに対する一つの答えになると考えています。なぜこのような基本的なことが分からないのかといえば、室傍核の CRH 神経細胞の活動記録が技術的に困難であり、微量な ホルモン放出を検出する手法が存在していなかったことが考 えられます。私は分子生物学的手法を用いて高感度かつ in situ で CRH 放出を可視化するバイオセンサーを開発し、二 光子顕微鏡観察と in vivo イメージングを使ってこの課題に 取り組んでいます。井上先生からはよく「なぜこの研究が重 要なのか」と「仮説の先にどのような神経メカニズムや新し い概念が展望されるか」を聞かれます。こういった基本的な 質問に対する自分の答えを持ち、先行研究を踏まえて考え えを研ぎ澄ませていく能力を持っているために、先に進む ことが可能であると考えています。井上先生は共同研究にオープンで、例 えば、分子生物学的手法を用いたバイオセンサーは、GPCR の研究をされているRithwik Ramachandran 先生に師事し て開発しました。私は、幸運にしてRithwik 先生の直接指導 を受け、分子生物学をより深く学べることをことができただけず、 部局のセミナーや大学院生向けの授業の担当に推薦して いただいたことで、教育歴が出来たり、同部局の多くの先生 方と知り合うことができました。現在これまでの研究結果を 論文としてまとめていくので、納得いく論文を書いて、お 世話になった先生方に報告したいと思います。

最後に

もし博士課程の頃に戻ったとしても、また同じ選択をし たいと思う程充実した生活を過ごしていますが、これは色々 な方に助けいただいているからだとも思っています。パンデ ミック直後は在宅令が発令され、これまでロンドン市のロック ダウンが計 4 回ありました。最初のロックダウンでは大学 そのままが閉まり、1か月ほど実験ができませんでした。大 学が再開した後もラボの面積に応じた人数制限が課されたこ と、動物の購入と繁殖に制限がかかったこと、流れした大 学で大幅に計画が遅れました。しかし、部局の先生方と話 するとき（「君なら大丈夫、焦らずサイエンスを楽しむ なし」と）、と言ってくださり、現在まで務めることが可能 で、今後も研究に取り組んでいます。井上先生からは、ここでの研究が好きだと言っ てくる間はサポートできるよう最善を尽くすので、安心し て研究に集中するように、と言っていただきました。当時、 北米で留学をしていた八尾研の先生方から定期的にオンライン ミーティングを開催し、新しい知見やアドバイスをいただ きました。また、ボストンに留学していた同期の山下 稔 先生（現・ 東大天野研助教）はプログラミングを教えてくださいました。そ の頃、同期が自分と同じ環境にいるというだけで心強かった し、今ではこのプログラミングがデータ解析になくては ならないツールになっています。

最後になりますが、今回執筆の機会をいただきました東 北大学 有村 奈利子先生、国立精神・神経医療研究センター 神経研究所 村松 里衣子先生、ならびに留学に際し背中を 押してくださった東北大学 稲田 仁先生にこの場をお借り し、お礼申し上げます。また、読者の皆様の留学経験がよい ものとなることを、カナダからお祈り申し上げます。

(大屋 知徹さんが 2022 年 5 月に発行された神経科学ニューメ になると西オンタリオ大学について留学記を書かれていますの で、そちらも併せてご一読ください。)

2022年12月に開催されたRithwik Ramachandran lab, Qingping Feng lab, Peter Chidiac lab, Peter Stathopulos lab, Van B. Lu labの合同ランチにて。左の矢印がRithwik先生、右の矢印が筆者を指す。マスクをしない人はもう珍しくない。
ミクログリアはホスファチジルセリン依存的に
成体新生ニューロンのシナプスを貪食する

名古屋市立大学大学院医学研究科 脳神経科学研究所
神経発達・再生医学分野
医学部 6年 根松 千紘

哺乳類の生後の脳でも、脳室下帯や海馬齒状回には、神経幹細胞が存在し、新しくニューロンが作られています。産生された新生ニューロンは、嗅球や海馬で既存のニューロンとシナプスを形成しながら成熟します。高度な神経回路を形成するためには、シナプスの数を適切に調節する必要があり、発達期の脳では、中枢神経系のグリア細胞であるミクログリアがシナプスを貪食（刈り込む）ことでシナプスの数を調節していることが報告されています。一方で、成体新生ニューロンの成熟過程におけるシナプス刈り込みについては、あまり研究されておらず、分子メカニズムも不明でした。

このメカニズムを明らかにするために、本研究では、細胞膜を構成するリン脂質であるホスファチジルセリン（PS）に着目しました。PSは通常は、細胞膜の内側に存在しますが、死細胞では細胞膜の外側に露出し、ミクログリアなどによる死細胞の貪食を促進します。最近の研究で、発達期の脳においてミクログリアによるシナプス刈り込みにPSが関与していることが報告されました。しかし、成体新生ニューロンのシナプスにおけるPSの局在や機能は明らかになっていませんでした。

まず、ミクログリアが成体新生ニューロンのシナプスを貪食しているかを調べるために、電子顕微鏡で、嗅球のミクログリアと成体新生ニューロンのシナプスの拡大像を詳細に観察しました。その結果、成体新生ニューロンのシナプスが、ミクログリアに取り込まれている様子が観察されました（図1）。ミクログリアが成体新生ニューロンのシナプスを貪食することが示唆されました。

図1.ミクログリアは成体新生ニューロンのシナプスを貪食する
電子顕微鏡の連続画像。ミクログリア（緑）の中に、シナプス構造（青）が成体新生ニューロンの樹状突起（赤）に近接した状態で取り込まれている（青矢印）。スケールバー：400nm（掲載論文より一部改変）

次に、成体嗅球や海馬歯状回におけるPSの局在を調べたところ、シナプスマーカーであるPS95とPSシグナルが重なっていたことから、成体嗅球や海馬歯状回のシナプスでもPSが細胞膜の外側に露出していることが示唆されました。

そこで、ミクログリアによる成体新生ニューロンのシナプス貪食におけるPSの機能を調べるために、PSに結合するオプソニンであるMFG-E8の変異体（MFG-E8D89E）によって、PS依存的な貪食を阻害することができる新しい遺伝子改変マウス（D89Eマウス）を作製しました。このマウスを用いて、ミクログリアによるシナプス貪食過程におけるPSの機能を調べるために、2次元イメージングを用いて、生きたマウスの脳内の

図2.PSはミクログリアのスパイン上での細胞膜の伸展と貪食に関与する
A.ミクログリア（緑）と成体新生ニューロン（赤）のスパインの様子の模式図。①ミクログリアがスパインに軽く接触する様子、②ミクログリアがスパイン上で細胞膜を伸展させて密に接触する様子、③ミクログリアがスパインを完全に貪食する様子に分類した。
B.二光子顕微鏡によりAの頻度を定量した図。D89Eマウスでは、貪食の頻度が有意に減少した。

（掲載論文より一部改変）
ミクログリアと成体新生ニューロンの後シナプス構造（スパイン）の動態を観察しました。その結果、コントロールマウスでは、ミクログリアがスパインに軽く接触する様子に加え、ミクログリアがスパイン上で細胞膜を伸展させて密に接触する様子や、スパインを貪食する様子が観察されました（図2A）。一方で、D89Eマウスでは、ミクログリアがスパインに密に接触する頻度やスパインを貪食する頻度が有意に減少しました（図2B）。このことより、PSは、スパイン上のミクログリアの細胞膜の伸展とスパインの貪食に関与していることが示唆されました。

次に、D89Eマウスを用いて、成体新生ニューロンのスパイン刈り込みにおけるPSの役割を調べました。刈り込み後の時期において、嗅球新生ニューロンのスパイン密度を比較したところ、D89Eマウスではコントロールマウスに比べて、スパイン全体の密度が増加しており、成熟形態のスパイン密度も増加していることが分かりました（図3A）。このことから、嗅球では、PS依存的にスパインを刈り込むことで、成体新生ニューロンの成熟スパインが過剰にならないように制御されていることが示唆されました。

同様に、海馬歯状回でも成体新生ニューロンのスパイン密度を比較したところ、D89Eマウスではコントロールマウスに比べて、スパイン全体の密度は増加したもの、成熟形態のスパイン密度は減少しました（図3B）。このことから、海馬歯状回では、PS依存的にスパインを刈り込むことで、その後のスパイン成熟を促進していることが示唆されました。さらに、海馬新生ニューロンの電気生理学的な特徴を比較したところ、D89Eマウスでは機能的なシナプス数の数や強度が減少しており、海馬歯状回におけるPS依存的なスパイン刈り込みは、シナプスの機能的な成熟に影響を及ぼすことが示唆されました。

今回の研究により、ミクログリアによる成体新生ニューロンのシナプス刈り込みに関与していることが明らかになりました。シナプス密度の異常やミクログリアの形態異常が報告されている自閉症などの疾患と、PS依存的な成体新生ニューロンのシナプス刈り込みとの関連を調べることで、新たな病態の理解につながる可能性が考えられます。

【掲載論文】

【研究者の声】
論文を完成させるにあたり、想像以上に多くの実験を行う必要があり、学部の授業や勉強と並行しながら、実験を進めるのは大変でした。しかし、同時に自分で新しいことを発見する楽しさを実感できたことが何よりの財産だと思います。心にご指導いただきました秋田恒浩先生、澤田雅人先生をはじめ、共同研究者の先生方、ご支援くださった皆様に深く感謝申し上げます。

【略歴】
2019年より名古屋市立大学大学院医学研究科脳神経科学研究所 神経発達・再生医学分野MD-PhDコースに所属し研究を開始。2023年度現在、名古屋市立大学医学部6年。
神経障害性疼痛は体性感覚神経系の傷害や疾患によって発症する慢性疼痛で、痛覚過敏（過剰に痛みを感じる）やアロディニア（軽く触れただけで痛みを感じる）などの症状を呈します。多くの患者がこの慢性疼痛に苦しみ、既存の治療薬が奏功しない例も多いため、病理メカニズムの解明と新規治療法の開発が待たれています。神経障害性疼痛モデル動物を用いた基礎研究から、疼痛発症の原因の一つとして、脊髄後角でのミクログリアの活性化が挙げられます。ミクログリアは末梢神経損傷に反応し、遺伝子発現や形態、細胞数を変化させます。その結果、周囲の神経機能を変化させ、脳へ痛覚信号を伝達する神経の興奮性を高め、疼痛過敏やアロディニアが誘発されます。ミクログリアの細胞数の増加や遺伝子発現の変動は疼痛の発症期にピークとなり、その後、緩やかに減衰します。このため、これまでの研究では神経障害性疼痛の発症期にフォーカスがおかれ、発症から一定期間経過後に認められる痛みの自然寛解におけるミクログリアの役割は注目されてきませんでした。

今回の研究では、神経障害性疼痛の症状が寛解する時期に、CD11cを発現するミクログリア（CD11c陽性ミクログリア）の数が増加すること、さらにCD11c陽性ミクログリアに疼痛を抑制する働きがあることが示唆されました。そこで、CD11c陽性ミクログリアの役割を検討するため、CD11c陽性細胞を可視化するマウス（Itgax-Venus）を利用しました。このマウスの脊髄くも膜下腔内へジフテリア毒素を投与することで、CD11c陽性ミクログリアを除去し、アロディニア様症状に対する影響を調べました。その結果、CD11c陽性ミクログリアの除去によって、疼痛の発症には影響しないものの、疼痛の自然寛解が強く阻害されることが分かりました（図2A）。この結果から、CD11c陽性ミクログリアが疼痛を寛解する作用を持つことが示唆されました。この疼痛寛解作用の分子機構を探るため、前角CD11c陰性と陽性ミクログリアのバーレットRNAシークエンスにて遺伝子発現を比較しました。その結果、CD11c陽性ミクログリアで高発現し、疼痛寛解の時系列に沿って関与している遺伝子群が見つかることで、CD11c陽性ミクログリアの増加と相関して、疼痛症状が寛解する。
って発現増加する遺伝子として、インスリン様成長因子（Insulin-like growth factor-1: IGF-1）を特定しました。そこで、CD11c陽性細胞、もしくはCX3CR1陽性細胞（全てのミクログリアを含む）でIgf1を欠損したマウスを作製しました。これらの遺伝子欠損マウスは、神経損傷後に野生型マウスと同様にアロディニア様症状を発症したものの、その後の自然覚解は生じませんでした（図2B）。加えて、リコンビナントIGF-1を神経障害性疼痛モデルマウスの脊髄を膜下腔内に投与すると、そのアロディニア様症状の覚解を早めました。以上の結果から、CD11c陽性ミクログリアはIGF-1を産生することで神経障害性疼痛を覚解に導く機能を有することが示唆されました。

これまで神経障害性疼痛の発症を誘導する細胞と考えられてきたミクログリアの中に、むしろ疼痛を抑制する亜集団がいるとは大変驚くべき発見でした。それではCD11c陽性ミクログリアはどのようなメカニズムで出現するのでしょうか？他の慢性疼痛モデルで検証したところ、末梢神経の損傷を伴わない炎症性疼痛モデルマウスの脊髄ではCD11c陽性ミクログリアが出現しないことが判明しました。また、末梢神経のうち、ミエリン化神経のみを損傷した場合、CD11c陽性ミクログリアが脊髄で出現し、非ミエリン化神経の損傷では出現しませんでした。これらのことから、ミエリン化された末梢神経への損傷がCD11c陽性ミクログリアの出現に重要な因子であることが示唆されました。なお、神経損傷後の脊髄において、CD11c陽性ミクログリアはより多くのミエリンデブリを取り込んでいました。加えて、精製したミエリンデブリを正常マウスの脊髄後角に注入すると、ミクログリアがそれを取り込むと、CD11cを発現している様子が観察されました。この結果から、末梢神経が損傷するとミエリンが破壊され、それを貪食したミクログリアがCD11c陽性化し、TAM受容体の役割を果たすことが期待されます（図3A）。貪食の分子メカニズムとして、CD11c陽性ミクログリアに高発現するAXLを注目しました。AXLはホスファチジルセリンを認識するTAM受容体の一つで、ミエリンの貪食にも関与します。AXL欠損マウスは野生型に比べ、神経損傷後のCD11c陽性ミクログリアの数が少なく、アロディニア症状の覚解も遅延しました（図3B）。AXLを介してミエリンを貪食することで、CD11c陽性ミクログリアの増加は神経障害性疼痛の緩和に必要であることが示唆されました。

これまでの研究では神経障害性ミクログリアは神経障害性疼痛を引き起こす細胞であると考えられ、疼痛発症後の役割については注目されていませんでした。今回の研究で、痛み覚解期に増加するCD11c陽性ミクログリアサブセットの存在と、その痛み抑制作用が明らかとなりました。更に、他の中枢神経系疾患への応用も期待されます。今後はIGF-1が痛みを緩和するメカニズムやCD11c陽性ミクログリアが増加するメカニズムのさらなる解明やそれらを治療に応用する方法の開発が待たれます。

【参考文献及び掲載論文】

【研究者の声】
近年のホットトピックスであったミクログリアの多様性という分野に、機能性の観点から重要な知見を追加できたことをうれしく思います。本研究を遂行するにあたり、多くの方々のご指導及びご協力を賜りました。ここに深く感謝申し上げます。

【略歴】
2021年に九州大学薬学府博士課程修了
2021年4月から2023年3月まで民間企業で研究職に従事
2023年4月より現職
慢性疼痛は急性組織傷害の通常の経過や治癒後に持続する痛みと定義されている難治性疾患です。原因疾患は末梢神経損傷や炎症、糖尿病とさまざまで、外傷などの器質的要因が除去された後に通常は痛みとして感知されない刺激においても、激痛として知覚してしまう状態が長期間続きます。慢性疼痛の発症維持メカニズムについての研究はこれまで末梢神経、脊髄といった部位でした。しかし近年の報告によると S1 を含む大脳での感作や認知などの非器質的要因の影響によるものが大きいとされています。

その慢性疼痛の標準的治療は痛みに対する対症療法として鎮痛剤が主流を占めており、痛みのない状態にすることは難しいため痛みの軽減が治療目標となっています。またこれまで多くの薬物治療が行われてきましたがその効果は限定的であり、薬物の増量を余儀なくされ、欧米においてはオピオ

神経障害性疼痛は耐えがたい痛みが続く難治性疾患です。しかしその治療法は確立されていませんでした。今回我々は未梢からの痛み入力を抑制した上で一次体感野 (S1) のアストロサイトの活動制御することで、痛み関連神経回路を組み替え、痛み関連行動を抑制することに成功しました。

図1 経頭蓋直流電気刺激(tDCS)はアストロサイトを活性化し、痛みを改善する。
アストロサイトにアデノ関連ウイルスを用いてカルシウム感受性蛍光タンパク質GCaMP6fを発現させました。tDCSにより約8-10時間後までアストロサイトのCa2+活動が上昇しています（図1a）。坐骨神経部分結紮後2週間後よりtDCSによる治療を開始しました。まず末梢にテトロドトキシン(TXX)を徐放性ポリマーであるelvaxに混ぜ、坐骨神経部分結紮部位に局所投与しました（図1b）。tDCSは1回10分、1日3回の治療を行い、治療後も疼痛様行動が改善しました（図1c）。
イド鎮痛薬における薬物依存が問題にもなっています。

これまで前任地である研究室では神経障害性疼痛モデルマウスにおいて末梢神経傷害急性期に末梢からの過剰入力によりS1アストロサイトが活性化され、活性化アストロサイトより分泌されたシナプス再編因子によりシナプスの可塑性が亢進し、S1活性化アストロサイトによる神経回路の再編成を見いだしていました（Kim et al. J Clin Invest 2016）。

しかしアストロサイトの活性化は一時的であり、慢性期には回路編成が起こらず、再編成された痛み関連回路が保持されてしまいます。これにより痛覚過敏やアロディニア（異痛症）の状態が持続する可能性が考えられました。そのためアストロサイトを再活性化させることでシナプスの可塑性を再び呼び起こし、再度痛み関連回路を異なる回路に組替え、痛覚過敏やアロディニアを除去することはできるかと考えました。

本研究は慢性疼痛となった後の（疼痛維持期）の根治療法としてアストロサイトを標的として用いました。アストロサイトを活性化する方法として用いる経頭蓋直流電気刺激（tDCS）（Monai, et al., Nat Comm., 2016）やDREADD（Designer receptors exclusively activated by designer drugs）を用い、末梢からの痛み入力を抑制した状態で1週間のアストロサイト活性化を行いました。

本研究の治療法は①末梢神経から痛み刺激の過剰入力抑制と②大脳皮質での活性化アストロサイトによる神経回路編成の併用療法です。具体的には、アストロサイトの活動はすでに低下しているが痛覚様行動が持続する疼痛維持期に、末梢からの過剰入力を抑制した上でアストロサイトを活性化し、シナプス編成を再度引き起こし、末梢感受覚に対する応答を正常化（痛み過敏回路の消失）する戦略を展開しました。

痛みが長期間続く末梢神経（坐骨神経）部分結紮2週間後の神経障害性疼痛モデルマウスを慢性期に治療を適用しました。末梢神経過剰入力抑制には部分結紮部位にテトロドトキシン（TTX）を徐放性ポリマーであるelvaxに混ぜることで局所投与を行う方法もしくはリドカインの浸透圧ポンプを末梢に留置し持続投与する方法を用いました。そしてアストロサイトの活性を御制できる手法としてtDCSに注目しました。これまでアストロサイトのみを活性化させる薬物の報告はありませんが、経頭蓋直流電気刺激（tDCS）を用いることでマウスでのアストロサイトの特異的活性化が行うことができます。陽極を末梢神経障害部位と対側の大脳
皮質感覚野後方に設置し、陰極を頭部筋に埋め込みアストロサイトの活動を誘導しました。tDCS の効果を確認するため生体 2 分子錠微鏡でアストロサイトの Ca^{2+} 活動を観察、覚醒下に 10 分間 0.1mA の直流電流を流し、アストロサイト活動亢進が 8 ~ 10 時間起こりました（図 1a）。そのため 1 日 3 回 8 時間毎の tDCS を施行することで持続的なアストロサイトの活動を起こしました（図 1b）。それにより末梢からの痛み入力を抑制し tDCS による治療群のみ痛み関連行動は認められなくなった（図 1c）。

tDCS は同側〜対側まで広域のアストロサイトを活性化させます。そのため、Gq-DREADD をアデノポリジンウイルスを用いて S1 アストロサイトに発現させ、S1 アストロサイト限局的に活性化させました。この S1 アストロサイト活性化により痛み関連行動は抑制され、この効果は治療後 2 ヶ月間維持されました（図 2a）。

この作用機序を探るため、一次体性感覚野の神経回路編成をスパインイメージングを用いて探りました。Thy1-GFP マウスを用いて第 5 層縦体細胞の軸索のスパインを経時的に描出し、スパインの入れ替えをコントロール群と比較し評価しました。その結果、スパイン組換えは治療により上昇し、特に末梢神経部分結紮後 1 週間以内に新たにできたスパインの除去が起こっていることが分かりました（図 2b）。このことからこの治療法の作用機序は痛み関連回路のスパインが選択的に除去されることにより一時性感覚野の神経回路の組換えを考えられました（図 3）。

tDCS はすでに慢性疼痛でも使用されており、トランスレーショナルリサーチとして人への応用も可能です。本治療法を人に応用することができれば患者の QOL を上昇させるだけでなく、根治療法としてこれまで必要であった薬物療法を中止することも可能と考えます。

【掲載ジャーナル】

【研究者の声】
本研究は生理学研究所に異動してから開始した研究で、これまでとは異なるテーマに四苦八苦する私でしたが、鍋倉淳一先生をはじめ生体恒常性発達研究部門の皆さんが支えられて、成果を報告することができました。深く御礼申し上げます。

【略歴】
2014 年 広島大学大学院医歯薬総合研究科修了
2016 年 生理学研究所生体恵常性発達研究部門 研究員
2020 年より名古屋大学大学院医学系研究科分子細胞医学
2022 年より現職
衝動的な攻撃行動の多くは、悪口を言われた、にらまれた、危険運転をされたなど、他者から何らかの挑発を受けたと感じたときの応答として生じます。社会的挑発が攻撃行動を増加させるという現象は、魚からげっ歯類まで、さまざまな動物において観察されています。雄マウスはなわばり性の動物であることから、なわばりに侵入してくるライバルの雄に対しては攻撃行動を示して追い払おうとします。しかし、ライバル個体を直接攻撃できないようカゴの中に入れ、ライバル個体の存在が見えているのに攻撃できない状態にしばらく置くと（社会的挑発）、居住者マウスの攻撃的覚醒が高まり、その後の攻撃行動が通常時の2倍近く増加します（図1A）。

わたしたちは、社会的挑発による過剰な攻撃行動の誘発にかかわる神経メカニズムとして、背側縫線核（DRN）に着目して解析を行ってきました。なぜならば、セロトニン（5-HT）は攻撃行動にかかわる神経伝達物質としてもっともよく研究されてきており、DRNには前脳に投射する5-HT産生ニューロンが多く局在しているからです。これまでの研究で、社会的挑発中にDRN内のグルタミン酸入力が増加していること、そしてL-glutamateをDRNに局所投与することで雄マウスの攻撃行動が昂進することを知りました。本研究では、このDRNへの興奮性入力がどの脳領域に由来するのか、そしてDRNに局在するどのニューロンが攻撃行動の昂進に関与するのかを調べました。

本研究では、社会的挑発による攻撃行動の昂進に、外側手綱核（LHb）から背側縫線核への興奮性入力が関与することを明らかにしました。さらに、背側縫線核から脳前野へ投射する非セロトニン作動性ニューロンが、過剰な攻撃行動の誘発に関与することを示しました。
な投射先の1つとして腹側被蓋野（VTA）への投射が見つかってきました。そこで、VTAへ投射するDRNニューロン（DRN-VTA投射ニューロン）が攻撃行動の亢進にかかわるかを調べるために、オプショナルにVTAへの光刺激を行うことで、攻撃行動の増加が示されました。今後の結果から、社会的挑発による攻撃行動の態因には、LHB-DRN-VTAの攻撃行動の増加が示されました（図2）。攻撃行動を適切な量に抑えることができれば、より平和な社会が実現できるかもしれません。
神経回路の最適化を支えるバーグマングリアによるシナプス貪食

東北大学大学院生命科学研究科超回路脳機能分野
日本学術振興会特別研究員 (PD) (研究当時) 森澤 陽介

学習に伴い、脳内に情報が書き込まれる際、不要なシナプス接続は淘汰され、効率的な神経回路が再構築されます。本研究では、適応運動学習時の中脳において、バーグマングリア細胞が不要なシナプスの一部を貪食することで、神経回路の最適化ならびに適応行動の定着の一端を支えていることを明らかにしました。

学習や経験を通じ、脳内の神経回路は可塑的に変化します。この性質のおかげで、我々は学び、ヒトとして成長することができます。記憶形成時に脳内で生じる変化を考えると、神経細胞間の情報伝達が強くなる、もしくは新たなシナプスが形成されることで記憶が作られると考えられてきました。しかし、不要な情報を担うシナプスでの信号伝達が弱くなる、あるいは既存のシナプスが消失することもまた、記憶形成に伴う神経回路の最適化に必要な過程と言えます。

脳には、神経細胞以外にアストロサイトやミクログリアなどのグリア細胞が存在します。近年、これらのグリア細胞が、シナプスを貪食することで、発達期の神経回路形成や、病態時の脳機能異常に関わることが数多く報告され、注目を集めています。学習に伴いシナプスが淘汰される過程にも、グリア細胞による貪食は働いているのでしょうか？たとえグリア細胞によるシナプス貪食が起きとしても、学習過程で生じる不要シナプスの判別は、総シナプス数と比して、ごく僅かです。さらに、貪食された神経細胞由来の断片は細胞内の消化器官（リソソーム）で速やかに分解されるため、その現象を捉えることは容易ではありません。そこで我々は、貪食細胞の役割を解明する新たな遺伝子変異マウスを作出することに挑戦しました。

まず、特定の神経細胞特異的なプロモーター下でtTAを発現する遺伝子を持つマウスと、今回、新規作出したtetO-pHRedマウスを掛け合わせ、神経細胞特異的なpHRed発現を実現しました。ドキシサイクリンの有無により転写を時期特異的に制御可能。

図1. バーグマングリア細胞による神経細胞の貪食総括法
（A）神経細胞特異的にテトラサイクリン制御転写活性因子（tTA）を発現するマウスとtetO-pHRedマウスを掛け合わせ、神経細胞特異的なpHRed発現を実現した。ドキシサイクリンの有無により転写を時期特異的に制御可能。（B）プルキンエ細胞特異的にpHRed（マゼンダ）を発現させたところ、バーグマングリア細胞の細胞体内に（グリーン、点線）に、一部を貪食して取り込んだ粒子状のシグナルが多数観察された。

貪食細胞は、脳細胞死に伴い細胞膜表面に露出するホスファチジルセリン（PS）を“Eat-me signal”として認識し、貪食します。近年の研究から、シナプスにおいてもまた、PSが局所的に細胞外へと放出され、これがシナプスの判別を促すことが示唆されています。Annexin Vは、PSに特異的に結合しPS依存的貪食経路を阻害します。そこでAnnexin VをpHRedマウスに投与したところ、バーグマングリアによるpHRedの貪食が抑制されました。以上の結果から、バーグマングリアによるpHRedの貪食は、PS依存的な貪食経路を介していることが示されました。
小脳は、スポーツや楽器の演奏などの運動学習を担っており、特に、シナプスの接続が減弱することが、効果的な適応運動学習の成立につながると考えられています。特に、本研究で着目した有頭型眼球運動(HOKR)への学習において、小脳のFlocculusにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による食事との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられました。水平方向に左右に触れられる画像をマウスに繰り返し提示すると、眼球運動の振幅が大きくなることが知られており、この現象をHOKR学習といたします。HOKR学習後、小脳の当該領域を観察すると、小脳バーグマングリアにおける興奮性シナプス接続の減弱が重要であることが示されており、グリア細胞による貪食との関連を検証する上で、有用な学習モデルと考えられる。
行動や情動変化に関与する神経細胞群を数秒・数分単位の時間枠で同定し、
活動操作するための新規遺伝学的ツールの開発

ヒトを含む動物の行動に関与する神経細胞・神経回路を同定することは、行動や情動のメカニズムを理解するために重要です。さらに、病態の原因となる神経細胞や回路を同定することで、精神神経疾患の治療開発にも繋がる可能性があります。そのため、以前から行動に関係する特定の細胞を同定・神経活動操作をするためのツールが開発されてきました。しかし従来の遺伝学的ツールでは、細胞を標識するために数時間から数日単位の行動の継続性を必要とし、断続的に起こる行動・情動変化に関連する細胞(群)の標識・同定が困難、または標識のみで神経活動操作ができないという問題点がありました。我々はこの問題を解決するために、活動電位に伴うカルシウムの流入と光照射が同時に生じた際に特定の細胞に遺伝子発現を誘導する遺伝学的システム(Cal-Light)を2017年に発表しました(Lee*，Hyun* et al.，Nat. biotechnol. 2017)。しかし、従来のCal-Lightでは、主に細胞外で生じる非特異的なカルシウムシグナルにも反応してしまうという限界がありました。我々はこの問題を解決するために、活動電位の細胞体に限局して発現できる新たなCal-Light(soma-targeted Cal-Light(以下ST-Cal-Light))を開発し、マウスを用いた様々な行動実験においてその機能と有用性を確認しました。

最初に、Cal-Lightが細胞体に限局して発現する遺伝子プラスマト制を新たにカイニン酸受容体のサブユニットであるKA2のN末端の150アミノ酸残基と電位依存性カリウム受容体のKv2.1のN末端の150アミノ酸残基をク
ローニングし、それぞれ Cal-Light のコンストラクトの中にあ る CaM と Myc-tag の間に挿入しました（図 1）。そして、 その 2 つのコンストラクト（ST-KA と ST-Kv2.1）の reporter gene（GFP）の発現効率を培養細胞と急性脳スライス上で評価 したところ、従来の Cal-Light と比較して、より高い効率で遺 伝子発現を誘導することに成功しました（図 1）。特に ST-KA2 がより高い効率で reporter gene を発現したことから、行動実 験での機能評価を念頭に置き、ST-KA2 を ST-Cal-Light としてアデノ関連ウイルス（AAV）を作製しました。そして、実際の マウス行動中での ST-Cal-Light の機能確認を行うため、AAV ベクターを用いて ST-Cal-Light を様々な脳部位に発現させ、各 部位に関連した行動実験を行いました。

まずレバー押し課題で従来の Cal-Light との性能比較を行 いました。レバー押しの学習期間中で従来型 Cal-Light で用い た 6 日間とその半分の 3 日間で光照射を行ったところ、従来的半分となる 3 日間の光照射でもレバー押しに関連し た一次運動野の細胞の同定・活動操作を行えることがわかりま した（図 2A）。続いて、数秒単位の光照射を用いた恐怖条件付け課題では、従来版 Cal-Light では同定できなかった恐怖記憶に関連した背側海馬 CA1 領域内の細胞群を同定し、同じコンテキストにおいて恐怖 記憶の抑制ができました（図 2B）。さらに、数秒から数分単位 で断続的に起こる社会性行動課題に関連した細胞を内側前頭前 野で同定し、その活動を抑制することで、社会性抑制を可能 にしました（図 3A）。また、薬剤（カイニン 酸）を使用したてんかん誘発課題でも関連する細胞群を海馬で 同定し、その活動を抑制することでてんかんの発作の程度の軽減にも成功しました（図 3B）。最後に、特定の分子マーカーを 発現する細胞種の中で行動に関与する細胞集団を同定するため に、Cre 依存的に ST-Cal-Light の CaM を含むコンストラクト を発現するマウス（ST-Cal-Light ノックインマウス）を作製し ました。そして、PV-Cre と Emx1-Cre と交配して、大脳皮質（一

図2: A. レバー押し課題
B. 恐怖条件付け課題

図3: A. 社会性行動課題
B. てんかん誘発課題
次運動野）内の抑制性の PV 陽性細胞と興奮性細胞のそれぞれで reporter gene の高い標識効率を示すことを確認しました。今後、この ST-Cal-Light ワイルスとソックインマウスが広く神経科学の研究で用いられることで、複雑な行動や認知機能、精神神経疾患などの病態のより詳細なメカニズムの解明が期待されます。

【掲載ジャーナル】
Tagging active neurons by soma-targeted Cal-Light.
*Co-first authors

【研究者の声】
他のプロジェクトの条件検討から派生して本研究への参画がスタートしました。特にリバイスでは、ST-Cal-Light の限界を攻める要求になかなか苦戦しましたが、今まで気づかなかった tips も明らかになり、より多くの研究者・神経科学者の方々に使用して頂けるツールができると自負しています。また、この仕事を通じて多くの優秀な共同研究者とのネットワークを構築することができました。今回はツール開発がメインだったので、次回作はぜひ biological question の解明に挑戦したいと思っております。最後に mentor の Hyungbae とラボメンバー、共著者の方々に心より感謝申し上げます。

【経歴】
2013 年日本医科大学医学部卒業。2 年間の内科初期研修後、2015 年より東京大学大学院医学系研究科機能生物学専攻神経生理学分野（狩野方伸研究室）に大学院生として入学。2019 年より同教室で特任研究員、2020 年 4 月より現職、2022 年 4 月より日本学術振興会海外特別研究員。
人間を含む哺乳類の体温は外気温が変化してもほぼ一定に37°C付近に保たれますが、平熱域から逸脱すると生命が維持できなくなることから、体温調節は生命活動の基盤的な機能です。脳の体温調節中枢は視床下部の視索前野にありますが、体温の調節司令を担うニューロン群や調節メカニズムの動作原理は不明でした。そこで私達は、感染時に産生される発熱メディエーターであるプロスタグランジンE₂（PGE₂）の受容体、EP3を発現する視索前野ニューロン（EP3ニューロン）に着目し、平常の基本的な体温調節における機能を調べました。ラットを暑熱環境に置くと、神経の活性化マーカー、Fosを発現するEP3ニューロンが増加しました。一方、PGE₂を脳内に投与すると、発熱が起こるとともに、暑熱によるEP3ニューロンの活性化が抑制されました。このことか

体温調節の基本原理

上図: 暑熱環境では、皮膚から温覚入力を受けて視索前野のEP3ニューロン群の活動が高まる。その結果、視床下部背内側部などの交感神経駆動領域へのGABA作用性の抑制信号が強まるため、交感神経出力が弱まるため、皮膚血管の拡張を通じて熱放散が促進されるとともに熱産生が抑制され、体温の上昇を防ぐ。

下図: 寒冷環境あるいは感染が起こった場合、皮膚からの冷覚入力あるいは発熱時に産生されるPGE₂がEP3ニューロン群が受容すると、その神経活動が抑制されることで、恒常的なGABA作用性の抑制信号が弱まる。その結果、交感神経駆動領域への抑制が解消（脱抑制）され、交感神経出力が亢進することで、褐色脂肪組織の熱産生が増加するとともに熱放散が抑制されることで、体温低下の防止と発熱の悪化が起こる。脱抑制された交感神経駆動領域の神経興奮は、視索前野を含めた複数の脳領域からのグルタミン酸（Glu）作動性入力が駆動すると考えられる。
ら、EP3ニューロン群は環境温度や感染の情報を受容して活動が変化することがわかりました。次に、EP3ニューロン群特異的な遺伝子導入を可能にする遺伝子組換えラットを作製し、EP3ニューロン群を蛍光標識したところ、交感神経系を駆動する視床下部脳内側部に多数の神経終末が観察されました。その終末の伝達物質を調べると、興奮性のグルタミン酸よりも抑制性のGABA作動性ニューロンのマーカーを含有する終末が圧倒的に多く見つかりました。また、電気生理学的解析から、これらの終末がGABAを放出することも確認されました。ラットを暑熱環境に2週間置くと、GABA作動性の終末の割合が増加したことから、GABAを放出するEP3ニューロンの神経終末を増やすことで効率的に熱産生を抑制し、暑熱耐性を向上させていることが示唆されました。化学遺伝学的方法を用いてEP3ニューロン群を活性化すると熱放散が促進され、体温が低下した一方、抑制すると褐色脂肪組織の熱産生が起こり、体温が上昇しました。本研究によって、視索前野のEP3ニューロン群は常に抑制性のGABA作動性信号を送り、その抑制の強さを変えることで交感神経出力を制御し、体温を両方向性に調節することがわかりました。そして、体温調節の司令塔であるEP3ニューロンからの恒常的な抑制信号のトーンによって体温が決定されると考えられます。

【掲載ジャーナル】
Prostaglandin EP3 receptor-expressing preoptic neurons bidirectionally control body temperature via tonic GABAergic signaling
https://doi.org/10.1126/sciadv.add5463

【研究者の声】
本研究は神経終末の伝達物質を同定するために8万個以上のシナプス様構造を一つずつ目で見て数え、視索前野の細胞は、それ以上の個数を数えてマッピングし、今回のが結果を得ました。この様々な実験は時間がかかりますし、動物作製開始から様々な技術的困難もあり、13年かかって本研究を論文発表するに至りました。短期的な成果や論文数を求められる時代ですが、こうした期間のかかる研究に理解を示し、安心して研究に集中できる環境を与えてくださった中村和弘教授、研究の中を支えた中村和弘教授、研究の場を与え研究結果が出ることを楽しみにしてくださっていた京都大学大学院医学研究科金子武嗣教授、実験にご協力くださった共著者の皆様、そしてラボメンバーに感謝いたします。
神経科学ニュースへの原稿を募集しています

学会への提言、研究雑感、学会見聞録、書評等、神経科学の発展につながるものであればどのようなものでも結構ですので以下の要領でお送りください。英文での掲載も希望される方は、英文記事をあわせてお送り下さい。

なお、神経科学ニュースのプリント版の郵送は、2021年No.4を最後に終了させていただきました。
以降は、オールカラーのPDF版を学会ホームページに掲載しています。
下記よりダウンロードしてご覧下さい。
https://www.jnss.org/neuroscience_news

1. 原稿は下記フォーマットの電子ファイルを、メール添付でnewsletter@jnss.orgまでお送り下さい。
 a. 文章はMS Wordで作成して下さい。画像（写真・図）は文中に貼り付けず、オリジナルファイルを別にお送り下さい。
 b. 画像はJPEG、TIFFなどのフォーマットで、適度な解像度（最大で300pixel/inch程度まで）、かつメール添付可能なサイズ（1点当たり2〜3MB程度）に調整して下さい（数値は目安です）。

2. 記事1編は1ページまたは2ページ以内に収めて下さい。（依頼原稿のページ数は依頼者にご確認下さい。）
 1ページの場合（日本語全角で約2000字程度）
 2ページの場合（日本語全角で約4600字程度）

 但し画像は以下の基準で文字数に換算します。ご入稿時に、ご希望の掲載サイズをご指定下さい。
 画像（小）： ①横8cm・縦6cm以内。300字相当。
 画像（中）： ②横8cm・縦12cm以内か③横16cm・縦6cm以内。600字相当。
 画像（大）： ④横16cm・縦8cm以内。800字相当。

3. ご入稿後の原稿の差し替えは原則として行わず、お送りいただいたファイルをそのまま利用しますので、誤りの無いことをお確かめの上、原稿をお送り下さい。ただし、編集委員会から修正をお願いする場合があります。

4. 掲載の可否と時期については、ニュース編集委員会で検討の上、決定させていただきます。

5. 発行日と入稿締切日は通例以下のとおりですが、都合による変動があります。具体的な締切日については、事務局までお問い合わせ下さい。

2月10日発行号（12月初旬入稿締切）
4月10日発行号（1月末頃入稿締切）
7月10日発行号（4月末頃入稿締切）
11月10日発行号（8月末頃入稿締切）

6. 掲載料は不要ですが、記事の執筆者は原則として学会員あるいは協賛・後援団体である事が必要です。

求人情報、学会・シンポジウムの案内、助成金の案内は、ホームページにて、掲載させていただきますので、https://jnss.org/submissionsをご参照ください。

日神経科学学会の Facebook と Twitter の公式アカウントができました。各種のイベント情報や、求人募集情報など、様々な最新情報を発信しています。ご興味のある方はぜひチェックしてください。

facebook.com/JapanNeuroscienceSociety
twitter.com/jnssorg（@jnssorg）
募集要項

1. 掲載媒体：日本神経科学学会 会報「神経科学ニュース」の目的配信メール（HTMLメール）
2. 送信メール数：約6,200通（日本語版 約5,200通、英語版 約1,000通）
3. 送信対象：日本神経科学学会 会員
4. 送信回数：年4回
5. 契約期間：1年間（4回）
6. 掲載場所：目的配信のHTMLメール中に掲載（日本語版・英語版の両方）
 ※HTMLメールを受信拒否している人のために、テキストメールも同時配信します。
 テキストメールにも「スポンサー」の欄を設け、バナーに設定するリンク先URLをテキストで掲載いたします。
7. 掲載料：40,000円/1回（日本語版+英語版両方向の掲載）×4回＝160,000円（不課税取引）
8. 入稿形態：フォーマット：JPG（GIFアニメ不可）
 大きさ：幅134pixel x 高さ75pixel
 （バナーに設定するリンク先URLもお送り下さい）
 ※日本語版と英語版で、バナーのデザインやリンク先URLが違う場合は、2種類のデータとURLをお送り下さい。
 ※契約期間中のバナーの差し替えは無料です。
9. 入稿方法：メール添付
10. 広告掲載費のご請求：毎年1月に1年分をまとめてご請求させていただきます。

年間の発行スケジュール

※バナーの入稿締切日の詳細につきましては、事務局にお問い合わせ下さい。

● 2023年1号 2月10日発行予定
 （バナーデータ入稿締切：2023年1月末）
● 2023年2号 4月10日発行予定
 （バナーデータ入稿締切：2023年3月末）
● 2023年3号 7月10日発行予定
 （バナーデータ入稿締切：2023年6月末）
● 2023年4号 11月10日発行予定
 （バナーデータ入稿締切：2023年10月末）

ご入稿の前に

初回掲載時は、入稿締切日より1週間ほど前を目安に、バナー画像のサンプルをお送りください。神経科学ニュース編集委員会で確認させていただきます。修正等をお願いする場合もございますのでご了承ください。

別途、学会HPでのバナー広告（月1万円）も募集しております。
https://www.jnss.org/adinfo/

お申込み・お問い合わせ

日本神経科学学会 事務局
〒113-0033 東京都文京区本郷7丁目2-2本郷ビル9F
TEL:03-3813-0272／FAX: 03-3813-0296
E-mail: office@jnss.org
URL: https://www.jnss.org/
本号も最後まで御覧いただき、ありがとうございます。今回は、8月1日から4日に仙台で開催される第46回日本神経科学会に関してご案内しております。シンポジウムの数も多くとても充実した内容がご覧いただけるかと存じます。研究室紹介では、ごく最近に就任・昇任された若手研究者の方にご執筆を依頼しました。研究内容が魅力的であることはもちろんですが、両先生方のお人柄も感じられ、とても楽しい内容になっています。留学体験記では、留学に至った経緯なども丁寧に記述していただきました。生活に関することも詳細にご説明いただいており、今後留学を考える方にとって非常に参考になる情報のように思います。神経科学トピックスは、今回はいつもより多い7つの論文をご紹介いただきました。素晴らしい論文が多く、研究のアクティビティがとても高い状態にいい刺激をいただけます。女性の著者も多く、学部生の方も含まれていることから、研究者の多様性を感じています。

これまで神経科学ニュースの編集に関わる中で、著者の先生のお写真を拝見する機会が多くありました。マスクを着けていない笑顔のお写真が多く、編集作業中にとても温かい気持ちになりました。本号が発刊する頃にはマスクを着ずに面々でお会いすることも増え、より充実した人的交流が行われていることを思います。新年度、新しい環境で、みなさまが素敵な春をお迎えになりますようお祈り申し上げます。