The 40th Annual Meeting of the Japan Neuroscience Society

Neuroscience 2017

Pushing the Frontiers of Neuroscience

President: Masanobu Kano
(Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo)
Date: July 20 - 23, 2017
Venue: Makuhari Messe (2-1, Nakase, Mihama-ku, Chiba-city, 261-8550, Japan)

NEW JNS Meeting Planner is now open!
http://www.jnss.org/abstract/neuro2017/meeting_planner/

Contents 目次

1 The 40th Annual Meeting of the Japan Neuroscience Society
3 Announcement of the Awardees of the Japan Neuroscience Society Young Investigator Award-Fiscal Year 2017
4 Announcement of the First Awardee of the Altman Award in Developmental Neuroscience
8 Announcement of the 19th recipients of the Tokizane Prize
9 We welcome Submissions to Neuroscience News
10 第40回 日本神経科学大会のご案内
12 平成29年度 第17回 日本神経科学学会奨励賞 受賞者決定
13 平成29年度 第1回ジョセフ・アルトマン記念発達神経科学賞 受賞者決定
15 平成29年度 第19回時実利彦記念賞 受賞者決定
16 プレインサイエンス振興財団 平成28年度塚原仲晃記念賞及び研究助成受領者
18 道 標 : 第3回（貴邑 富久子先生）
23 研究室紹介 : 知覚のセントラルドグマを求めて（村山 正宜）
25 留学記 : セントラルパークが通勤路だった2年間（高橋 阿貴）
27 参加記 : Cosyne (Computational and Systems Neuroscience) 参加記（岡澤 刚起）
29 コラム : 新学術領域「意志動力学」と「思春期」の紹介を読んで（香山 雪彦）
31 神経科学トピックス : パターン分離の神経回路機構
- 海馬歯状回顆粒細胞と苔状細胞の生理学的特徴と場所情報表現の違い-（千歳 雄大）
33 神経科学トピックス : 延髄C1ニューロンを介する抗炎症作用 : 急性腎不全を例に（安部 力）
35 神経科学ニュースへの原稿を募集しています・賛助会員一覧
36 編集後記（山中 章弘）
Membership registration and payment of the annual fee

Please note that if you are not a member of the Japan Neuroscience Society, or if you have not yet paid this year’s membership dues, you will not be able to make an oral or poster presentation as a first author. Please complete the required procedures as soon as possible. If you are presenting the results of your research, the registration fee for the meeting may be claimable as research expenses. Please consult with the administrative staff at your institution for details.

Name Card, Receipt and Meeting Program

Pre-Registered Participants in Japan
Please pick up a congress bag and a program book at the “Preregistered Participants Desk.” You need an exchange ticket, which the Neuroscience 2017 Secretariat has sent to you prior to the meeting.

Pre-Registered Participants from Overseas
Please show up at the “Pre-Registered Participants Desk” and pick up your meeting badge, meeting program, and congress bag.

Onsite Registration
Fill out the registration form and bring it to the “Onsite Registration Desk.”
Cash payment only. We do not accept credit cards.
Note: Students are required to show a valid student ID card.

Program
Neuroscience 2017 will provide numerous planned lectures, including 4 Plenary Lectures, 4 Special Lectures, 2 Tsukahara Award Lectures, 1 Tokizane Award Lecture, and 11 Educational Lectures. The rest of the program is also packed with content, with 53 symposia, 60 general oral presentation sessions (240 presentations), and around 1,200 poster presentations, with a total of 1,789 scheduled presentations. The chair person and members of the Program Committee have made the greatest possible efforts and used a good deal of detailed ingenuity to ensure that all these presentations can be given at appropriate times and places, and that participants will be able to hear as many presentations as possible in an efficient way. Please visit the Program page on the Meeting Web site for details. http://www.neuroscience2017.jnss.org/en/program.html

ON-site Child Care Service
The daycare service will be provided at an extremely affordable fee, One-day price: JPY3,000 incl.tax per child. For details, please visit the website. The deadline for reservations is Thursday, July 13rd, 2017. Reservations received after the deadline will be accommodated only when space is available.

The Japan Neuroscience Society Desk
The JNS Desk is located next to the Registration Desk. New JNS membership application and annual fee payment are accepted here. Please feel free to stop by anytime. Note that the membership needs to be approved by the Director of General Affairs later. Payments are accepted in cash only.

Questionnaire
A questionnaire on Meeting operations is distributed at the venue. We ask all participants to provide your feedback on the programs and others in order to further improve the Annual Meeting of the Japan Neuroscience Society in the future.

Secretariat for Neuroscience 2017
A&E Planning Co.,Ltd.
6F Shin-Osaka Grand Bldg., 2-14-14,Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
Tel: +81-6-6350-7163 Fax: +81-6-6350-7164
Email staff@neuroscience2017.jnss.org
Announcement of the Awardees of the Japan Neuroscience Society Young Investigator Award-Fiscal Year 2017

The Japan Neuroscience Society Young Investigator Award in 2017 fiscal year was announced to go to the five following researchers. The ceremony will be held during the 40th Annual Meeting of the Japan Neuroscience Society.

"Physiological studies of higher-order olfactory processing in fruit flies"

Dr. Toshihide Hige
Howard Hughes Medical Institute, Janelia Research Campus

"Experience-dependent maintenance of synaptic connectivity mediated by the metabotropic glutamate receptor subtype 1"

Dr. Madoka Narushima
Department of Physiology (I), School of Medicine, Tokyo Women’s Medical University

"Functional impact and modulatory mechanism of distinct inputs to the hippocampus"

Dr. Hiroshi Ito
Max Planck Institute for Brain Research

"Neural mechanisms for social memory in eliciting adaptive social behaviors"

Dr. Teruhiro Okuyama
Massachusetts Institute of Technology, The Picower Institute for Learning and Memory

"Visualization and analysis of neural activity in the brain by genetic engineering and by optical microscopy"

Dr. Takashi Kawashima
Howard Hughes Medical Institute Janelia Research Campus

(Alphabetical order)
Announcement of the First Awardee of the Altman Award in Developmental Neuroscience

The Altman Award in Developmental Neuroscience in 2017 fiscal year was announced to go to the following researcher.

Itaru Imayoshi, Ph.D
Graduate School of Biostudies, Kyoto University

Submitted articles:

Message from the awardee

Toward the understanding of brain development, maturation, and regeneration

The recent discovery of neural stem cells in the adult central nervous system has raised the possibility of repairing damaged nervous tissue by recruiting their latent, endogenous regenerative potentials (Imayoshi et al., Nature Neurosci. 2008). The development of innovative non-invasive methods to manipulate neural stem cells in the brain has been expected to contribute to regenerative medicine for central nervous system disorders. We have recently demonstrated the first successful approach for artificially manipulating the proliferation and differentiation of neural stem cells using light (Imayoshi et al., Science 2013; Imayoshi and Kageyama, Frontiers in Cellular Neuroscience 2015). We are currently extending this regenerative approach to various types of neural disease models in mice and primates, such as traumatic injury, neurodegeneration, and psychiatric disorders.

Stem Cells and Neurogenesis in the Adult Brain

Since the initial discovery that the adult brain contains stem cells that can generate new neurons, an important question in neurobiology has arisen that concerns the functional importance of adult neurogenesis. Although a substantial body of work has
shown that some of these new, adult-born neurons integrate themselves into active neural circuits, the magnitude and importance of this integration is unclear. In our previous study (Imayoshi et al., Nature Neurosci. 2008), we demonstrated that adult neurogenesis is indeed important and that it may, surprisingly, fulfill two very distinct functions. In one brain region, the olfactory bulb, adult stem cell–generated progeny play a critical role in tissue maintenance. In contrast, in a second region, the hippocampus, they serve to add new neurons that are important for adult behaviors, such as learning and memory.

Our study provides clear evidence for the importance of adult neurogenesis in the normal adult brain. Adult stem cell–derived neurons are critical for maintaining the olfactory bulb, much as adult stem cell–derived progeny are essential for cell replacement in other parts of the body. When this process is perturbed, the tissue degenerates. In contrast, adult neurogenesis in the hippocampus is not required for its maintenance, but is instead required for neuronal addition and hippocampal growth, thereby potentially contributing to the ability to accumulate new memories throughout life. Our study highlighted the possibility of recruiting adult neural stem cells for neural repair, which may lead to the development of novel therapies for functional recovery after disease, trauma, or pathological aging (Imayoshi et al., Nature Neurosci. 2008; Sakamoto et al., J Neurorsci 2014).

Oscillatory Expression of Key Regulatory Factors in Neural Stem Cells

We recently uncovered the regulatory mechanisms that determine neural stem cell fate choices (Imayoshi et al., Science 2013; Imayoshi and Kageyama Neuron 2014). We showed that neural stem cell differentiation is associated with the sustained, dominant expression of particular transcription factors, whereas the proliferation of neural stem cells is associated with oscillating patterns of expression of several factors. Fate choices in neural stem cells involve various transcription factors, including achaete-scute homologue 1 (ASCL1), HES1, and oligodendrocyte transcription factor 2 (OLIG2). ASCL1 expression can promote the differentiation of neural stem cells into neurons, whereas HES1 and OLIG2 expression can promote the formation of astrocytes and oligodendrocytes, respectively. However, these transcription factors may also have roles in neural stem cell maintenance or proliferation, functions that seem to oppose their roles in fate determination.

To resolve these apparent contradictions, we developed a live-imaging system in which reporter expression was linked to expression of either ASCL1, HES1, or OLIG2. Time-lapse imaging of reporter expression revealed that the expression levels of each of these transcription factors oscillate. The periods of oscillation of ASCL1 and HES1 expression were similar (~175 min and ~150 min, respectively), but OLIG2 expression showed a much longer period (~375 min). We also found that transcription factor expression patterns change dramatically during cell fate choice. In
neural stem cells that differentiated into neurons, ASCL1 expression was sustained for 6 to 8 h. Similar changes in the pattern of transcription factor expression could also be seen during astrocyte and oligodendrocyte differentiation, in which HES1 and OLIG2, respectively, became the dominant transcription factors that were expressed.

Thus, key transcriptional factors are expressed in an oscillatory manner in neural stem cells, but as cell fate choice becomes established, one factor accumulates while the other two die away. Although oscillatory expression of multiple fate determining factors underlies the multipotent state of neural stem cells, this oscillatory pattern gives way to stable and dominant expression of one factor during cellular differentiation (Imayoshi et al., Science 2013; Imayoshi and Kageyama Neuron 2014).

Manipulation of Neural Stem Cells by Light

To demonstrate the functional importance of either oscillatory or sustained expression patterns, we adopted an optogenetic gene expression system using the Neurospora crassa photoreceptor Vivid (VVD). Using this system, we created oscillating and sustained expression of ASCL1 in cultured neural stem cells (Imayoshi et al., Science 2013). Repeated exposure of blue light with 3 h intervals generated oscillatory expression with a 3 h period, whereas repeated exposure with 30 min intervals generated sustained expression. Oscillatory expression of ASCL1 promoted cell proliferation and expanded the neural stem cell pool. Conversely, sustained light-induced expression of ASCL1 increased neuronal differentiation.

Together, these data suggest that expression patterns, rather than just expression levels of various transcription factors, determine whether neural stem cells proliferate or differentiate (Imayoshi et al., Science 2013). Our study demonstrated that the light-switchable gene expression system offers a new way to control the proliferation and differentiation of stem cells by changing light exposure patterns rather than using different growth factors or chemicals, showing its applicability to regenerative medicine.

Figure 3. Optogenetic Approach to Control Expression Dynamics

(A) hGAVPO activates gene expression by blue light illumination.
(B) The hGAVPO system shows that oscillatory expression of Ascl1 activates the proliferation of neural stem cells, whereas sustained expression of Ascl1 promotes neuronal differentiation (Adapted from Imayoshi & Kageyama Neuron 82: 9-23 2014).

I am deeply honored to receive this award. I am very grateful for the support of my mentors, members of my research team, and my family.

Professional Experience

<table>
<thead>
<tr>
<th>Period</th>
<th>Position and Institutional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2016 to present</td>
<td>Graduate School of Biostudies, Kyoto University, Associate professor</td>
</tr>
<tr>
<td>10/2014 to present</td>
<td>JST PRESTO Scientist at Institute for Virus Research, Kyoto University</td>
</tr>
<tr>
<td>04/2011 to 03/2016</td>
<td>The Hakubi Center, Kyoto University, Associate professor</td>
</tr>
<tr>
<td>10/2009-3/2012</td>
<td>JST PRESTO Scientist at Institute for Virus Research, Kyoto University</td>
</tr>
<tr>
<td>04/2009 to 9/2009</td>
<td>Department of Growth Regulation, Institute for Virus Research, Kyoto University, Postdoctoral fellow</td>
</tr>
<tr>
<td>04/2008 to 3/2009</td>
<td>Department of Growth Regulation, Institute for Virus Research, Kyoto University, JSPS fellow PD</td>
</tr>
<tr>
<td>04/2007 to 3/2008</td>
<td>Department of Growth Regulation, Institute for Virus Research, Kyoto University, JSPS fellow DC2</td>
</tr>
</tbody>
</table>
Education

2005-2008 Ph.D. (Biostudies) Kyoto University, Japan (Advisor: Prof. Ryoichiro Kageyama)

2003-2005 M.S. (Biostudies) Kyoto University, Japan (Advisor: Prof. Ryoichiro Kageyama)

1999-2003 B.S. (Biological technology) Osaka University, Japan (Advisor: Prof. Masamitsu Futai)
Announcement of the 19th recipients of the Tokizane Prize

The 19th Recipient of the Tokizane Prize was decided. The award ceremony and this year’s award lecture will be given on July 21st, 2017 at Room 1 (Makuhari Messe), during the 40th annual meeting of the Japan Neuroscience Society.

The 19th Tokizane Prize Awardee:

Minoru Saitoe, Ph.D
Learning and Memory Project,
Tokyo Metropolitan Institute of Medical Science

“Elucidating memory-associated neural and gene networks in the Drosophila brain”
We Welcome Submissions to Neuroscience News

Please submit articles that make a positive contribution to the development of neuroscience, such as proposals to the Society, comments on neuroscience, meeting reports, and book reviews. Submissions should conform to the requirements noted below.

1. Submissions will be accepted only in the form of electronic media.
 a. Ideally files should be submitted in Word (DOC, DOCX) format. If you want to use another format, please consult us in advance. HTML and RTF files are acceptable regardless of application software used to create the file.
 b. Image files should be in PICT, JPEG, or TIFF, and should be compressed if possible. Please send them separately from the text file.

2. The Neuroscience News Editing Committee will decide the acceptance and timing of publication of a submission, depending on its content.

3. As a rule, submissions will not be edited before publication; it is thus your own responsibility to ensure that they do not contain any errors or mistakes. The Editing committee may ask submissions to be revised in certain cases.

4. The deadline for submissions is normally the 25th of March, June, September and December; however, this deadline is subject to change.

5. There is no charge for publication of submissions in Neuroscience News. However, submissions are normally accepted from members of the JNS or from sponsors or supporting organizations.

6. Submissions should be sent to the following email address: news@jnss.org

Information regarding job vacancies, academic meetings, symposiums, and subsidies will be posted on the website of the Japan Neuroscience Society.

Please see https://www.jnss.org/adinfo_en/

The Japan Neuroscience Society now has an official Facebook page and an official Twitter account. We will provide various latest information, such as upcoming events and open recruitment. Find us on Facebook or Twitter.

facebook.com/JapanNeuroscienceSociety
twitter.com/jnsorg (@jnsorg)
大会案内

第40回日本神経科学大会テーマ
『進化する神経科学』
"Pushing the Frontiers of Neuroscience"

会 期：2017年7月20日（木）～23日（日）
会 場：幕張メッセ
大会長：狩野 方伸（東京大学大学院医学系研究科・神経生理学）
大会ホームページ：http://www.neuroscience2017.jnss.org/

NEW JNS Meeting Planner OPEN!
オンラインで演題抄録を検索・閲覧できるシステムを公開しました。
http://www.jnss.org/abstract/neuro2017/meeting_planner/

参加者へのご案内

会員登録・年会費の支払い
入会をお済ませでない方、年会費未納の方は、一般口演やポスターにて筆頭演者として発表することができません。速やかに手続きをお願いいたします。詳細は学会HP（http://www.jnss.org/join/）をご覧下さい。

研修単位制度
本大会は各種学会の専門医、認定医、及び、研修認定薬剤師の研修単位制度のポイント取得対象学会として認定されています。詳細については各学会、及び薬剤師研修センターへ直接お問い合わせください。

各種補助金での大会参加
大会参加費は、文部科学省の科学研究費補助金など、各種の研究費から支出可能な場合があります。詳しくは所属機関の事務担当者にお尋ねください。

プログラム集・ネームカード
事前参加登録をされた方は、①大会参加証（ネームカード）、②参加登録費領収証を7月上旬に発送いたします。入場には参加証（ネームカード）が必要です。会場の際に必ずお持ちください。ネームカードホルダーは、受付付近の記名台にてご用意しております。ただし事前に参加加証（ネームカード）等をお届けできるのは、6月15日までに事前参加登録費の支払いを完了された方のみとなります。
懇親会費の領収書が必要な方は当日の総合受付までお渡しください。

当日参加登録について
事前参加登録をされなかった皆様は、当日登録にてご参加ください。幕張メッセに参加受付を設置いたします。受付付近の記名台にて「Registration Form」に必要事項をあらかじめご記入の上、当日参加受付へお越しください。参加費は、一般（正会員）20,000円、一般（非会員）25,000円、大学生院生（學生会員）3,000円、大学生院生（非会員）5,000円です。発表を伴わない学部学生の参加費は無料です。大学生院生・学部学生の方は学生証の提示が必要です。当日のお支払いは現金のみで、クレジットカードはご利用いただけません。参加費と引き換えに参加証（ネームカード）とプログラム集をお渡しいたします。会場内では必ず参加証（ネームカード）をご用意ください。
なお、コンプレックスバックは数に限りがございますので、無くなり次第配布終了といたします。あらかじめご了承ください。

JNS Meeting Planner OPEN!
オンラインで演題抄録を検索・閲覧できるシステムを公開しました。
http://www.jnss.org/abstract/neuro2017/meeting_planner/
プログラムについて

今大会では、プレナリー講演4題、特別講演4題、壇原賞受賞記念講演2題、時実賞受賞記念講演1題、教育講演11題と、数多くの企画を用意しています。その他、シンポジウム53企画、一般口演60セッション（240題）、ポスター発表約1,200題と、合計1,789演題の発表が予定されており、大変充実したプログラムとなりました。プログラム委員長をはじめとする大会委員一同で、全ての演題をなるべく適時適所にて発表いただけるよう、また参加者の皆様を務めるとするよう努力し、細部にまで工夫を凝らしました。詳細については大会ホームページの「プログラム」をご覧ください。

URL http://www.neuroscience2017.jnss.org/program.html

託児室・親子休憩室のご案内

2000年度から毎年開設されている神経科学大会の託児室も、今回で18年目を迎えました。今年の大会でも、例年通り利用しやすい価格設定（一人1日あたり3,000円）となっています。事前利用申し込みの締め切りは7月13日（木）です。締切日以降も余裕があれば対応いただきますのでご相談ください。

託児室の詳細は大会ホームページをご覧ください。

学歴デスク

大会参加受付の隣に、学歴デスクを設置します。学歴への新規入会、会員の皆様の年会費の支払いを受け付けますのでご利用ください。年会費の支払い状況の確認等も可能です。お気軽にお立ち寄りください。また、知り合いの非会員の方々にも入会をお勧めください。ただし入会時には庶務理事会による審査・承認手続きがありますので、その場での会員番号の発行は出来ません。なお、支払い方法は現金のみとなりますのでご了承ください。

大会アンケートに関するお願い

大会運営に関するアンケート用紙を大会会場に設置します。今後の日本神経科学大会を改善し、より発展させていくために、是非皆様の率直なご意見をお寄せ下さいますようお願い申し上げます。

第40回日本神経科学大会事務局

株式会社エー・イー企画内
〒532-0003 大阪市淀川区宮原2-14-14
新大阪グランドビル6階
TEL:06-6350-7163
FAX:06-6350-7164
E-mail:staff@neuroscience2017.jnss.org
平成 29 年度 第 17 回日本神経科学学会奨励賞 受賞者決定

平成 29 年度の第 17 回日本神経科学学会奨励賞受賞者が下記の通り決定いたしましたのでご報告いたします。
今年の第 40 回日本神経科学大会の会期中、幕張メッセにて、授賞式を行います。

伊藤 博
マックスプランク脳科学研究
「海馬への異なる脳領域からの入力の機能的意義および制御機構の解明」

奥山 輝大
マサチューセッツ工科大学ピカワー学習・記憶研究所
「社会性記憶を介した、適応的な社会行動発現のための神経メカニズム解析」

川島 尚之
ハワードヒューズ医学研究所ジャネリア研究所
「遺伝学的及光学的手法による脳内神経活動の可視化と機能解析への応用」

鳴島 円
東京女子医科大学医学部生理学（第一）講座
「代謝型グルタミン酸受容体 1 型による視覚経験依存的な神経回路の維持」

髭 俊秀
ハワードヒューズ医学研究所ジャネリアリサーチキャンパス
「ショウジョウバエにおける高次嗅覚情報処理の生理学的研究」

(五十音順、敬称略)
平成 29 年度 第 1 回ジョセフ・アルトマン記念発達神経科学賞
受賞者決定

平成 29 年度 第 1 回ジョセフ・アルトマン記念発達神経科学賞受賞者が下記の通り決定いたしましたので
ご報告いたします。今年の第 40 回日本神経科学大会の会期中、幕張メッセにて、授賞式・受賞講演を行います。

受賞者
今吉 格
京都大学 大学院生命科学研究科

受賞対象論文

学歴
平成15年3月　大阪大学工学部応用自然科学科応用生物コース卒業
平成17年3月　京都大学大学院生命科学研究科修士課程高次生命科学専攻修了
平成20年3月　京都大学大学院生命科学研究科博士課程高次生命科学専攻修了
平成20年3月　生命科学博士の学位授与（京都大学）

職歴
平成19年4月　日本学術振興会特別研究員 (DC2) · 京都大学ウイルス研究所
平成20年4月　日本学術振興会特別研究員 (PD) · 京都大学ウイルス研究所
平成21年4月 特定研究員（JST・CREST）・京都大学ウイルス研究所
平成21年10月 JSTさきがけ研究者「脳神経回路の形成・動作と制御」領域（村上富士夫総括）
平成23年4月 京都大学白眉センター「白眉研究者」（特定准教授）
平成24年8月 京都大学 物質−細胞統合システム拠点（iCeMS）連携准教授（兼任）
平成25年4月 京都大学医学研究科・メディカルイノベーションセンター・SKプロジェクト・神経新生研究グループ Principal Investigator（兼任）
平成26年10月 JSTさきがけ研究者「統合1細胞解析のための革新的技術基盤」（浜地格総括）
平成28年10月 京都大学 大学院生命科学研究科（特定准教授、卓越研究員）
平成28年10月 京都大学白眉センター（兼任）
平成 29 年度 第 19 回時実利彦記念賞 受賞者決定

平成 29 年度の第 19 回時実利彦記念賞受賞者が、下記の通り決定いたしましたのでご報告いたします。今年の第 40 回日本神経科学大会の会期中、平成 29 年 7 月 21 日（金）に、幕張メッセにて、授賞式および受賞記念講演を行います。

第 19 回 時実利彦記念賞受賞者

齊藤 実 先生
公益財団法人東京都医学総合研究所

「ショウジョウバエ微小脳による記憶回路動作機構の分子生理学的解析」
御報告

公益財団法人ブレインサイエンス振興財団

平成 28 年度 塚原仲晃記念賞及び研究助成受領者

URL : http://www.bs-f.jp

平成 28 年度 第 31 回塚原仲晃記念賞受賞者 （2 名）※所属は推薦時のもの

「社会的認知機能のシステム生理学的解明」

今井 猛
（理化学研究所多細胞システム形成研究センターリーダー）
「匂い情報の時間表現を支える神経回路の解明」

安田 涼平
マックス・プラク
フロリダ神経学研究所
ディレクター

平成 28 年度 第 31 回研究助成受領者 （11 名）※所属は申請時のもの

今井 猛
（理化学研究所多細胞システム形成研究センターリーダー）
「匂い情報の時間表現を支える神経回路の解明」

江川 斉宏
（京都大学大学院医学研究科助教）
「レビー小体型認知症の早期診断法の確立」

小坂田 文隆
（名古屋大学大学院創薬科学研究科講師）
「アマクリン細胞サブタイプ特異的な情報処理」

角家 健
（北海道大学大学院医学研究科特任研究助教）
「皮質脊髄路の再生関連遺伝子の同定」

菅原 文昭
（兵庫医科大学医学部講師）
「円口類ヌタウナギを用いた小脳進化の研究」

田中 和正
（理化学研究所脳科学総合研究センター基礎科学特別研究員）
「記憶の記銘と想起を担う神経活動を特定する」

中山 隆宏
（金沢大学理工研究域バイオ AFM 先端研究センター助教）
「脳蛋白凝集の立体構造動態の動画撮影」

丹羽 伸介
（東北大学学際科学フロンティア研究所助教）
「シナプス小胞の軸索輸送制御機構の解明」

林（高木） 朗子
（群馬大学生体調節研究所教授）
「大規模機能的コンネクトミクス法の創出」

山田 朋子
（筑波大学医学医療系ゲノム生物学助教）
「神経における Gatad2b の機能の解明」

吉田 知之
（富山大学大学院医学薬学研究部（医学）准教授）
「シナプスオーガナイザーの動態解析」
平成29年度公募開始のお知らせ

公益財団法人ブレインサイエンス振興財団は、次の下記の各助成について本年度の公募を開始いたしました。

塚原伸晃記念賞：締切日=平成29年10月13日（金）
研究助成：締切日=平成29年10月13日（金）
海外派遣研究助成：締切日=平成30年1月12日（金）
海外研究者招聘助成：締切日=平成30年1月12日（金）

詳細は財団ホームページをご覧ください。

URL：http://www.bs-f.jp

公益財団法人ブレインサイエンス振興財団
〒104-0028 東京都中央区八重洲2-6-20
ホンダ八重洲ビル7F
TEL：03-3273-2565 / FAX：03-3273-2570
E-mail：fvgn4990@nifty.com
道標（どうひょう、みちしるべ）：
道路の辻、街道の分岐点（追分）に立てられた標識であり、目的地までの距離や方向を示すもの。

研究人生を長い街道を旅している…と例えるならば、街道の分岐点に掲げられた道標は、どちらに行くべきかという研究人生の目的や方向性を考えるときの重要な指標になるであろう。神経科学の研究において、道に迷いそうになったら、是非、先人に案内してもらいたいと思うであろう。

この「道標」というコーナーに書いて頂いた先人たちは、日本の神経科学のパイオニアで、高村光太郎の詩の一節である「僕の前に道はない。僕の後ろに道ができる…」を地で行かれた方々である。当時、何もないところを志一つで進まれた経緯を知るに、色々なものが多様化している時代であっても、我々に今でも通じる「研究者の精神」を知ることになる。是非、先人の言葉を探しに来てもらいたい。

「道標」～迷った時の道しるべ～となるように…。

「道標」は神経科学学会のホームページ（http://www.jnss.org/michishirube/）でもみることができます。

第3回 道標～迷った時の道しるべ～は、貴邑　富久子先生です。

Q: 研究を始めたきっかけは、何でしたか？

恩師、川上正澄先生にお会いしたことです。

川上先生は、私が横浜市立大学医学部専門課程1年生の終わり頃（1960年）、新しく医学部に設置された第2生理学教室の教授として、UCLA脳研究所への留学を終えて着任され、すぐに講義を始められました。大きな黒板に、学生に脳幹網様体賦活系の図を描かせ、何回も、意識というものがどのようにコントロールされるのかという講義をされたのを、今でも鮮明に覚えています。私たち学生は、ちょうど20歳のころで、「脳」というものに初めて接したことでした。

学生たちの何人かは、すぐに川上先生の脳の研究に興味をひかれて、設備が殆どない研究室に入り浸り、シールドルームを手作りし、NIHの助成で導入されたヒト用の大きな脳波計でウサギの脳波の昼夜を問わない記録に邁進しました。でも私は、頻繁に教室に行って川上先生がすすめて下さるお茶はいただきましたが、すぐに研究の手伝いをするまでには至らず、ウサギの脳への電極の
定位植え込み手術や、卵巣摘除してエストロジェンやプロジェステロンを投与して記録する実験などを眺めていました。これらの性ステロイドホルモンの投与は、卵巣摘除ウサギの逆説睡眠（今でいうREM睡眠）の量を増やす、という研究が行われていたのです。後になって、川上先生は、世界で初めて性ステロイドホルモンが脳機能に影響を与えることを示す実験をしていたのだろうと、また、欧州の研究者が切り開いていた神経内分泌学の一旦を支えることになっていたことを知りました。

私は、医学部を卒業して1年間のインターンを終え、医師国家試験を受けて医師の資格を得てから、何科の医者になろうかと考え、何科を選んでもきっと学位をとることになるのだろう、それなら、厳しい研究生生活になるかもしれないが、おもしろそうな、そして先端的な研究で、どのように発足した医師部大学院に入学し、第2生理学教室でのあこがれの脳の研究を開始しました。それは、単なる脳波の記録ではなく、脳内、特に辺縁系—視床下部系内の1点を刺激して、関連部位で記録される電位、誘発電気活動evoked potentialを記録する実験で、それがエストロジェンやプロジェステロンでどのような影響を受けるかというテーマでした。そのためでしょうが、この後の研究も、電気生理学が基本になり、またキーワードは性ステロイドホルモンになりました。

Q：研究をしていた頃に大きな壁というものはありましたか？また、大きな壁と感じたものは、何でしたか？それをどのように乗り越えられましたか？

ご質問の「大きな壁」とは、もちろん、研究上のものを意味すると思いますが、その意味では、横浜市大で約40年間の研究生活を送りましたが、研究上の大きな壁、というようなものは無かったと思います。

それより、大学院の4年生の頃に、すでに結婚し、一子も持っていた時に夫が病で急逝し、さて、これで、ほほんと研究生活を続けていいものかという不安、言ってしまえば、「人生上の壁」と言えるものが無かったと思います。でも、幸い、医師免許証を持っていることも、研究を続けることができました。それが、結果的には、学位取得のし易さと、その後、研究生活を続けることができるという、大きな壁でした。

留学先のボスであるSM McCann教授はまことに陽気で太っ腹のアメリカ人で、大きな声で、私はテキサンだといつも言っていました。ノーベル賞をとるかもしれないという言葉を誇ってきました。そこで、ふんだんな研究費のもと、なんの束縛もなく自由に研究の楽しさを味わわせてもらいました。そして、アメリカでの一人暮らしも本当に楽しいものでしたので、1年で削るようにとの連絡が届き、泣く泣く帰国することになります。

ただし、帰国後は、私が興味を抱くようになっていた神経内分泌学のテーマは、川上先生の大多是相容れず、私は川上先生からは独立した研究者として、自分のテーマをもって研究を続けていたことでしょう。しかし、こうなると自由になる研究費が必要でしたが、川上先生が完全に掌握していたので困りました。講座研究費はもちろんですが、川上先生の元気ないので、1年に一度しか賭けられないと思ったのです。

したがって、留学前の、近代化した研究環境について
知った頃とはちがい、川上先生との関係はあまり良いものとはいえませんでした。でも、私は、臨床や外部から来た大学院生などの学位取得のための研究の面倒を率先してみることにしました。そうすることで、その研究課題に自分の興味を盛り込み、しかも研究費も使いやすくなるというメリットがありました。こうして、学位論文は彼らの名前で、そして英文論文は私が筆頭で、という方策で、独立を果たしました。この時期は、生殖に関する LH、FSH などのホルモンの代わりに、ACTH（代替としての corticosterone）、PRL、GH などのホルモンに対象をシフトし、それでも楽しく、面白いでデータを得て、論文をきちんと書いていました。

でも、何と言うことか、1982年12月、川上先生は61歳という若さで、癌で急逝されてしまいました。その時、私は助教授にはなっていましたが、後継の教授選という荒波にもろに巻き込まれ、通常は1年で決着がつくものが、「女なんか教授に出来るか」という(本当に、そう言われたのです)横浜市大医学部男性教授達に2年間ももみくちゃにされたあげく、それでも応援してくださる男性教授達もいて、1985年4月、何とか教授になりました。

教授になった後は、川上先生から独立するために離れていた「生殖機能」の神経内分泌学に晴れて戻り、後で述べるような多ニューロン発射活動 multiunit activity (MUA) 記録に素晴らしい腕をもったテクニシャンにも恵まれ、楽しい研究生活を送ることができました。

Q：先生にとって「これがターニングポイント」だったと思われる出来事は何ですか？

川上先生の下での研究は、先生が UCLA 脳研究所で当時もっぱら用いられていたウサギを実験動物としての、それも電気生理学でした。エストロジンなどの性ステロイドホルモンが脳機能に影響を与えることを電気生理学的手法で明らかにしていくものでしたのが、当時、欧米で勃興した神経内分泌学は、エストロジンは下垂体前葉ホルモンである性腺刺激ホルモンの分泌にも影響をあたえることを明らかにしていました。そこで、大学院を終えて新しい研究開始しつつあった私は、第2生理学教室からアメリカに渡り、ウイスコンシン大学教授として現在も研究を続けている女性研究者、寺沢瑩先生とともに、実験動物をラットに切り替えていきました。同時に、放薬研究所でラット下垂体前葉ホルモンのRIAを日本で初めて確立していた若林克巳先生に技術を習い、第2生理学教室の研究手法に LH、FSH その他前葉ホルモンの測定手段を導入しました。この技術が、性ステロイドホルモンがどのような機序で性腺刺激ホルモンの分泌を引き起こし、排卵を惹起するのかという神経内分泌学を格段に進展させてくれたと思っています。

ただし、こうして得たホルモンの測定法とともに、川上先生が基礎を築いた電気生理学を併用することがメリットとなり、私たちの神経内分泌学をさらに進展させてくれました。それは、MUA記録による電気生理学です。アメリカのピッツバーグ大の E Knobil 教授が性腺刺激ホルモンの1時間周期のパルス状分泌と視床下部弓状核のMUAの活動上昇（ volley、ボレー）が完全に同期することを見つけ、その他の証拠も併せて、弓状核に在る LHRH ニューロンがこのような電気活動とともに LHRH を放出することを示しました。この MUA ボレーの研究は、川上先生の代で2名の、私の代になって1名の研究者がKnobil 教授のもとに参集して確立・発展され、その結果、第2生理学教室にも MUA 記録の技術を導入できました。卵巣摘除雌性ラットでは前葉からの LH 分泌は20 分周期でパルス状に起こりますが、こうしたラットにおける MUA 記録を同時に血中 LH 濃度の測定のために数分ごとに血液を採取する技術もラットで確立することが出来ました。それは、私がしばしば「MUA の女神さま」と呼んでいた MUA 記録用の電極を適格にラット視床下部弓状核に植え込むことのできるわめて腕のよいテクニシャンのおかげであったし、今でも彼女には感謝しているところで、余談ではありませんが、彼女は大学の技術員であって研究職ではありませんし、以来式の試験を受けてもらって、博士号をとってもらいました。
この後、世界的にも珍しいラットのMUA記録とLH分泌に関する沢山のデータと論文を得ることがなりましたが、この視床下部弓状核のMUAを私たちはLHRHパルス発生器（LHRH pulse generator）の電気活動と考え、排卵性のLHRHを分泌させるLHRHサージ発生器（LHRH surge generator）とし独立した神経機構であるという仮説をたてることができました。そして、雄性ラットの視床下部には排卵性のサージ状LHRH分泌機構が存在しないことから、その他の証拠も併せ、この性差は、胎生期に起こる視床下部の性分化のためであることを主張してきました。

Q：先生がやって来られた分野で、未だやり残されていることは何ですか？

ラットにおいては、視床下部弓状核とエストロジェンやテストステロンとの関わり方を検討することで、とくに雄性動物の排卵機構、そして雄性動物におけるこの機構の欠如を明らかにしました。これは、弓状核の構造と機能における性差を明らかにしたことになるかと思います。また、この間にも、弓状核以外の視床下部諸神経核、たとえば、性欲、食欲などの本能や、恐れ、不快などの情動に関わる前視床下部間質核、視床下部外側野、分郭状核など雄性ラットで大きい－神経細胞数が多い－という構造上の性差が次々と明らかにされてきました。雄性ラットの視床下部には排卵性のサージ状LHRH分泌機構が存在しないということから、その他の証拠も併せ、この性差は、胎生期に起こる視床下部の性分化のためであることを主張してきました。

一方、近年の神経科学では、新しい脳の各部の構造、つまりシナプスの種類と数は、出生後に感覚刺激の種類と頻度に依存して異なることを示してきています。つまり、出生時には明らかな性差はなく、出生後に、養育・教育といった社会・文化的影響を受けて性差が作られて行くことが示唆されてきていますから、私はジェンダーと呼んでいます。

この新しい脳につくられるジェンダーに関する研究で、定年までに私の研究室で唯一得ることができた成果は、雌雄ラットの離乳後の飼育を、通常の研究室で使われている固い餌（固形餌）ではなく、固形餌を粉状にした柔らかい餌（粉状餌）で行うと、成熟後の迷路学習において、雌性ラットの成績が上昇し、雄性ラットと同等になるというものです（Eur J Physiol, 1994）。それまで、固い固形餌で飼育されている世界中の雌性ラットは、雄性ラットより学習能力が低いことから、当然のごとく、雄性ラットが雌性ラットよりも高い認知能力をもつという性差があると考えられてきました。そして、それは、科学的な根拠に依拠されてきた、ヒトの認知能力に男性優位な性差があるという神話の裏打ちとして採用されてきました。しかし、新しい脳が司る認知機能が、生後の養育環境の如何によって柔軟に変わるというラットでの実験結果を得、私は胸が躍りました。世界中の研究室の雌性ラットが、固形餌を粉にして柔らかくした餌で育てられるようになったら、雌性ラットがどのような能力を発揮するようになろう、「という夢をみました。

この研究の続きは、私は定年退職のために行うことができませんでしたが、研究室に残った若い人たちが、
認知能力の性差が生後の飼育環境に依存することを支持する一連の成果を得て、発表してくれました。ただ付け加えますと、とても残念な事に、これらの成果は、少なくとも日本の、そして男性の研究者たちは納得されなかったようで、ある種の排斥を受けていたことが伝わってきました。欧米でも似た状況は指摘されていて、この性差に関する研究は、計画、実行、解析、解釈その他の研究関係者が全て男女の研究者によって成されなければ、男女に公平な研究とはならないと考えられているようになっています。したがって、この領域の研究の発展には、女性研究者の増加が必須で、これらの条件を満たす研究者の研究者によってのみ達成可能となるのだろうと考え、夢を将来に託することにしました。

とはいえ、大変嬉しいことに、その後あまり遠くない時に、世界的には志を同じくする研究者が現れて、2000年以降の世界中の男子と女子の数学成績に男女で差がなかった、というデータを発表してくれました（Kane JM et al, Notices of the AMS, 2012）。その結果から著者らの主張は、「男女平等が進めば進むほど数学能力の男女差が消失していく」ということで、これによって新皮質が関係するヒトの数学能力にも、従来言われてきているような、生得的な生物学的差が存在しないことが示されたことになります。私がやり残した研究は、ジェンダーと、出生後に男女が異なる環境で飼育・教育されたり、社会で取り扱われたりすることで新皮質に出来上がることが示されたことでした。私がやり残した研究は、ジェンダーは、出生後に男女が異なる環境で飼育・教育されたり、社会で取り扱われたりすることで新皮質に出来上がることが示されたことでした。この報告が、まだ完璧にとは言えませんが、かなり強い傍証となってくれたといえるのです。あとは将来に渡って、先に述べたような男女で公平な実験が重ねられて行うと希望するだけです。

Q：人を育てている時に「これが一番大切だ」と思う事は何ですか？

このような場で「これが一番大切だ」というようなこととは、おこがましくて言えません。でも、これまでを振り返ってみると、人を育てている時の、どの場面にも、基本には「愛情」があったように思います。

Q：最後に、これから研究を進めて行く人達へのメッセージをお願い致します。

「事実は小説より奇なり」これが私のメッセージです。頭の良い人は、テーマを与えられても、実験する前に結果を考えすぎて、つまらなそうだ、と手を動かさない。でも、自然の摂理というのは、人間では思いもつかない、ということを知るべきです。まず、こっそりとやってみましょう。

これから何が待っているのか分からない。ただ考え込むで立ち止まっているよりも、夢に向かって飛び出した方が、思いもかけない面白い事に遭遇するかもしれないのだ。
研究室紹介

2010年3月より理化学研究所の脳科学総合研究センター（理研BSI）において研究室を主宰しております。来年、数え年で42歳を迎えるにあたり、このような“大役”を神経科学ニュース編集委員会より仰せつかりました。研究室を立ち上げてから早いもので7年が過ぎました。今年はBSI設立20周年記念の年となりました。本当にあっという間でした（遠い目）……。来年、よい年でありますように。少なくとも確定していることは、大厄だと思います。村山が。

私は2006年に東京薬科大学（工藤・宮川教授）で博士を取得後、スイス・ベルン大学生理学部のLarkum先生（現在ドイツ・フンボルト大学）の下で、自由行動下のラットにおける皮質5層錐体細胞の樹状突起から光ファイバーや用いてCa²⁺イメージングを行ってきました。ある細胞の樹状突起は樹状突起スパイクを発生させます。そのスパイクの生理的意義を解明することが留学の目的の一つでした。当時、樹状突起活動に関するいくつかの論文を書きましたが、いまだにこの目的は達成できていません。難しいです。

単一神経細胞において、樹状突起スパイクは細胞体へ伝播し連続した発火活動を引き起こします。この意味で樹状突起スパイクは情報処理に寄与していると言えます。また細胞内Ca²⁺濃度が上昇するので、シナプス可塑性にも寄与するでしょう。ただこれらの考えは、単一細胞レベルで局所回路レベルでの生理的意義です。脳機能は全体を構成する個体における生理的意義はなんでしょうか。現在、私を含む一部の研究者は、知覚に関連すると考えています（もちろん他の脳機能に関連すると考えています）。しかし、これを証明することは容易ではありません。動物に感覚刺激を与え、その個体が刺激を知覚した、まさにその時！樹状突起スパイクが出たかどうかを調べる必要があります。またこれを人間にした時の研究も必要です。実験を考えてみると、ワクワク、ドキドキ、ソックリです。この因果関係が証明できれば、脳科学者の間で言われる“簡単な問題”が解けたことになるので、いよいよ本丸である“難しい問題”に切り込む可能性が出てくるからです。

理研BSIの私の研究室では、この本丸研究を見据えつつ、まずは樹状突起スパイクを誘起させる局所・広域回路メカニズムを調べることにしました。すなわち、どの脳回路（領域）が関連しているのか。また、その回路間での情報の流れを突き止めるのです。ここに至りた後、樹状突起スパイクと知覚との因果関係に迫ろうと考えています。樹状突起スパイクが、知覚の内容を表しているのか、それとも下流に知覚生成領域があり、樹状突起スパイクはそこに知覚情報を運ぶために使われているのか、どちらかといえば関係ないのか（涙）、現段階では分かりません。しかし、上述した脳領域、情報の流れ、そして知覚を生成させる時間軸上で最後の神経活動を見つけることになるのです。村山が。

研究室紹介

知覚のセントラルドグマを求めて

村山正宜

masa_murayama@brain.riken.jp

2色x2chファイバーフォトメトリー装置を自作中：実験している時が、やはり一番幸せ。
の世の中だったとしても 30cm ずつ前進できるじゃないですか。場合によっ
tては匍匐 (ほふく) 前進もありです。

知覚のセントラルドグマは逃げません。その位置を把握して、一歩一歩着実に前進していく所存です。時の先読
みはせず、研究をしっかりやっていれば、おのずと視界
は開けてくると思います。道が真っ暗闇だったら、自分
の力で照らすのみ。視界が開けたら、一気にトップギア
で突っ走るのみ。

このような恵まれた環境で研究を続けられているのも
多くの先生方、共同研究者、理研事務の方のご支援のお
かげです。苦楽を共にするメンバーにもお世話になっ
ております。皆様に、改めて感謝申し上げます。そして妻へ。

日頃、ほとんど単身赴任状態で負担ばかりかけています。
しかし、まだ自分は、何者にもなっていないので、今後
もこの世界で頑張らなくちゃいけません。ごめんなさ
い。感謝しています。健康だけは気を付けます。

最後に、研究室紹介を書く機会を下さりました委員会
の皆様に、本当に、心より感謝申し上げます。来年の大
厄に向け、おかげさまで前向きな、晴れ晴れとした気持
ちになりました。

これで “お厄” 御免、ということで……。

研究の主役たち（村山は写真撮影役）
http://www.brain.riken.jp/jp/faculty/details/32
セントラルパークが通勤路だった2年間

筑波大学 行動神経内分泌学研究室 国際テニュアトラック助教 高橋 阿貴

筑波大学が研究大学強化促進事業の一環として導入した国際テニュアトラック制度により、2年間海外の研究室にて修行できるという非常に恵まれた機会を与えていただきたく、2015年5月からこの春まで、ニューヨークにあるロックフェラー大学のBruce McEwen研究室にて留学させていただきました。ただ、実際の実験はMcEwen先生が共同研究をしていたマウントサイナイ医科大学のScott Russo研究室にて行うことが多くあったことから、ここではマウントサイナイでの滞在経験を紹介させていただきたいと思います。

Russo研究室では、社会的ストレス感受性の個体差における免疫系の役割を明らかにしようという研究が行われています。社会的ストレスを受けた個体のなかでも、うつ様の症状である社会行動の低下や快感の消失などが見られる個体と、全く影響を認められない個体のそれは、このストレス脆弱性の個体差に未梢の免疫系が関与しているということを明らかにしました。そして、実はストレスを受ける前から未梢の免疫系にはすでに個体差があり、それによって後のストレス脆弱性が影響を受けるということを示したのです。今まで行動研究を行ってきて全く意識に上ることのなかった、未梢の免疫系という謎のシステムが、実は脳に作用して行動を変えてしまうという事実に私としては感動し、それは自分の興味がある攻撃行動の個体差にも、免疫系が影響を与えることができるのではないかということを調べるため、Russo ラボで共同研究をさせていただきました。Russo ラボでは並行して、攻撃行動の報酬価に関わる神経回路を明らかにするというプロジェクトも行っており、オプトジェネティクスやフォトメトリーなどを用いて、攻撃行動と脳内報酬系の関係を明らかにしようという試みも行われています。朝のコーヒーを飲みながら、ラボメンバーと研究の進捗から「攻撃性って何か」のようなことを議論していると、通りかかったRusso先生がそこに合流して更に議論が白熱したというのも楽しい記憶です。

Russo先生は非常に勢いのある若手の先生で、毎日研究のディスカッションをメンバーと行って、色々相談を持ちかけると研究手法から研究の哲学まで熱く語ってくださいました。マウントサイナイはPIの人数が多いというところ、大学院大学のため学部生がいらないことから、研究室の構成人数は各ラボほど多く、Russoラボの私にそこから博士研究員が3人と大学院生が2人という構成で、少数精鋭という環境でした。個々の研究テーマはそれぞれかなり異なるものを行っている一方で、手術やサンプリング、行動解析などで人出が必要なときは皆、進んでお互いを助け合うのが当然という文化が出来上がってしまい、それのおかげで、かなり多くの実験を行うことができました。同様に、研究室間でも交流も流動的で、自力でできない解析を他のラボの人相談すると気さくに実験を助けてくれるという環境もあり、自分の分野でないことも共同研究によって成し遂げることが比較的簡単にできていたのです。

また大学内の中核的な研究室共同のWIP(work in progress)が毎週開催されており、若手研究者が研究の進捗を報告しあう機会が頻繁にあって、他の研究室のPIからも鋭い意見をもらうことで、更には共同研究のきっかけともなっていました。実際、SfNの現プログラムであるEric Nestler先生が一番前で聞いていたから、学会発表よりもむしろ緊張すると言う人も多く、学会発表やJob talkに向けての良いトレーニングの場でもありました。

マンハッタンという大都会に住んだにもかかわらず、ニューヨークの私の記憶のほとんどはセントラルパークの自然の中で歩いていたことで、そこでリスや野鳥やアライグマを眺めてほんわかと癒されていました。一方で、ちょっと行くとブロードウェーのミュージカルが見られたり、本格的なジャズバーがあったりと、非常に贅沢極まりない環境でした。ワーク・ライフバランスのとり方という観点でも、アメリカでの生活を行うことで見えてくることは多いと思います。周囲にはRusso先生を含め子持ちの研究者がけっこういて、子供を保育園などに迎えに行くために5時には帰るという生活をしていました。一方、学生や若手研究者たちは、5時過ぎると大学近くのバーに飲みに繰り出して、そこで研究の話やゴシップをしながら楽しむという時間も過ごしていました。仕事中の集中力はすごく、あのメリハリの付け方を私も身につけたいものと横目で見ながら、私は自分なりのペースで研究を楽しんでもらいました。

私は海外で研究させてもらうのは初めてではなく、しばらく前にボストンのタフツ大学のKlaus Miczek先生の研究室においてボストンクとして2年間お世話になりました。その時も、その後の研究人生を左右するような研究テーマに出会い、またとても良いメンバーと友人たちと出会うことも

http://www.jnss.org - 25 - The Japan Neuroscience Society, since 1974

The Neuroscience News 2017 No.3

10 July 2017 Consecutive Number 211
とがり、人生の考えが大きく変わりました。今回のニューヨーク滞在でもまた、とても素晴らしいメンバーと出会うとともに、切磋琢磨の姿勢や流動的なコラボレーション、ニューヨークならではの緊張感、そして Big journal に論文を出すことが比較的当たり前となっている研究室でどのように研究が進められているのかを間近に見て体験することができ、また考え方が新たになりました。特に若い人たちにお伝えしたいのは、是非とも機会を見つけて海外で出ているように研究が進められている研究室でどのように研究が進められているのかを間近に見て体験することができる、その体験は後の人生の宝物になると思います。実際に海外でラボを立ち上げて活躍されているカッコいい日本人の先生方もたくさんおり、そういった可能性も視野に入れて色々と試みてもらいたいと思います。

最後に、このような貴重な体験をする機会を与えてくださった小川園子先生、Pavlides Constantine 先生、一谷幸男先生、そして受け入れてくださった Bruce McEwen 先生と Scott Russo 先生、ならびに研究をご支援してくださった方々に深く感謝をいたします。Russo 先生は本年度の日本神経科学大会のシンポジウムをオーガナイズ・講演されますので、是非ともお話を聞きに来ていただければと思います。
今年2月にアメリカのソルトレイクシティ（ユタ州）で開催された Cosyne 2017 に初めて参加しましたので学会の概要と様子をご紹介します。Cosyne (Computational and Systems Neuroscience) は計算論・システム神経科学をテーマとした中規模の学会（写真1）で、この分野では SfN と並んで重要な学会の一つになってきているように思います。2004年頃より特にアメリカの理論・システム系の研究者により運営され、毎年冬ごろに開催されています。メインの会議はおよそ3日間行われ、それに加え直後にワークショップが呼ばれる会議がさらに2日ほどあります。学会で発表される内容は、回路・システムレベルの研究が多く、感覚系、運動系、注意、学習、記憶、報酬、意思決定といったトピックの研究や実験系のどちらの研究もよく見られます。これに加え解析手法やニューラルネットワークモデル、機械学習などの発表があります。学会の特徴の一つはトーク・ポスターに査読があり厳しい採択基準であることです。2ページほどの要約を送ると3名の査読結果が返ってきて、採択率65%ほど（ポスターの場合）で発表ができます。厳しいですが、会のクオリティを高く維持しようという意図でしょう。

今年はメインの会議の参加者はおよそ300 ~ 500名ほどで、一つの会場でのトークセッションと夜に行われるポスターセッションが3日間に渡って行われました。トークセッションは一日あたり約15の発表、そのうち約3/4は一般口演、残りの1/4は招待講演、その分野のトップクラスの研究者が今やっていることを紹介してくれます。ポスターは毎晩夜7時半から100くらいを一斉に行い、夜11～12時ほどまで行われます。小さい会場だけあって多くの方に立ち寄ってもらい、また比較的長く聞いていただけたのはよかったです。SfN ではどうしても関連するもの全てをカバーしようと足早にポスターを見ることが多いですが、今回のようにじっくり話ができるのはよいのです。学会に日本人は少なかったように思いますが、何人かの方とお話させていただく機会がありました（写真2）。

写真1：アメリカのソルトレイクシティ（ユタ州）で開催された Cosyne 2017 の抄録集の表紙

写真2：Cosyne 2017 のポスターの前で（筆者）

今回の学会で個人的にトレンドと思ったのは多細胞同時記録の解析手法です。ユタ電極（剣山電極）や V プローブ（リニア型電極）が行動中の動物で盛んに使われて、多数のニューロン活動を調べられるようになってきており、得られたデータをどう解析するかというのは大きなトピックになっています。学会では様々な次元削減手法により多数の細胞活動を低次元に落として可視化する手法が発表されていました。例えば、行動に関係する次元を探出し、多細胞活動からネットワークのアトラ

ニューヨーク大学神経科学センター
博士研究員 岡澤 剛起
クター状態を同定しようとするもの2,あるいは脳領域間の情報のやりとりを理解するのに適した次元を見つけるもの3などがありました。これ以外のトピックとしては、登場してすでに数年になりますが深層学習（ディープラーニング）についての発表もそれなりにありました。多くは脳活動と深層学習が似ていることを主張するものであると思いますが、何らかの類似性があるとしてそこから神経メカニズムの真の理解にどうつなげるのかについて今後のブレークスルーが待たれます。また、最近、話題になった「神経科学者はマイクロプロセッサを理解できるか」という論文4の著者がトークをしていました。コンピュータのマイクロプロセッサが動いているときのトランシスタの活動パターンは何もメカニズムは理解できなかったという内容ですね。なぜ理解できなかったのか深く考える必要があるかと思います。ちなみにこのトークは非脊椎動物の研究のセッションに入っていましたが、理由は「マイクロプロセッサは少なくとも脊椎動物ではないだろうから」という（アメリカっぽい）ユーモラスなものでした。

メインの会議の直後にあるワークショップはソルトレイクシティの山麓にあるスキーリゾートに移動して2日間、行われました（私は参加しませんでした）。会ではよりリラックスしたスケジュールで、一日あたりおよそ10のトークセッションが同時進行であったようです。一つのセッションは午前と午後に分かれており、計10ほどの講演があったようです。ただ長い昼休みがあるので、スキーを楽しむ方が多いのだと思います。私が参加しなかったのは、ホテル代が高かったのと、実験の都合もありましたが、スキーという子供の頃にスキーサーヨットに行かせて滑らせられ、他の人を衝突した傷を特別レッスンになった苦い覚えが蘇ってくるのであまり気が進まなかったと思います（ワークショップに行ったからといってスキーを書く必要はないのでしょうか）。

学会が開かれたソルトレイクシティは、モルモン教の拠点としても有名です。会場のすぐ近くに総本山であるソルトレイクテンプルがあり手軽な観光ができました。敷地内には美しい神殿のような建物（写真3）があり、簡単な展示などもある他、教会に入るとオルガンの音が流れていきました。また、教会にはシスターの方がおり30分ほど熱心に教会の歴史などを紹介していただきました。私のボスも以前、学会の帰りに立ち寄ったときに同様に熱心な勧誘を受けたらしいのですが、なにしろボスは厳格なサイエンティストなので激論になり、しまいには当時自分が住んでいたシアトルの家まで彼らを連れてきて議論を続けたと言っていたが、全く大変な情熱です。

さて、これまでソルトレイクシティで学会が開かれていましたが、どうやら来年（2018年3月）はデンバー（コロラド州）になるようです。ただしワークショップはこれまでと同じくメイン会場近隣のスキーリゾートで行われるようなので、会のスタイルは変わらないのではないかと考えます。個人的には、計算論、システム分野のハイレベルな研究を凝縮して開けるという点ではよい学会のように思います。あとは、スキーや乗り方を学ぶのが楽しみです。

内には美しい神殿のような建物（写真3）があり、簡単な展示などもある他、教会に入るとオルガンの音が流れていきました。また、教会にはシスターの方がおり30分ほど熱心に教会の歴史などを紹介していただきました。私のボスも以前、学会の帰りに立ち寄ったときに同様に熱心な勧誘を受けたらしいのですが、なにしろボスは厳格なサイエンティストなので激論になり、しまいには当時自分が住んでいたシアトルの家まで彼らを連れてきて議論を続けたと言っていたが、全く大変な情熱です。

さて、これまでソルトレイクシティで学会が開かれていましたが、どうやら来年（2018年3月）はデンバー（コロラド州）になるようです。ただしワークショップはこれまでと同じくメイン会場近隣のスキーリゾートで行われるようなので、会のスタイルは変わらないのではないかと考えます。個人的には、計算論、システム分野のハイレベルな研究を凝縮して開けるという点ではよい学会のように思います。あとは、スキーや乗り方を学ぶのが楽しみです。

乱しているその心の整理を手伝っていると、2~3年かか
るが自然に回復（この分野では治癒と言わない）していく
若い人たちが多い。
そのように私は生きづらさを抱えてさまざまな依存行
動や解離症状に苦しむ人たちと関わってき
てきた。例えば拒食・過食などの摂食障
害は自分の抱える苦しさを訴えるため、と同時にその苦し
さを生き延びるための行動であるが1）、その行動を採る
のは、摂食調節機構の脆弱性のためではなく、生活の文
脈の中でそれが最も手近にあり、かつ自分を傷付ける程
度が最少ないからである。問題は個々の行動を起こすメ
カニズムではなく、何故そのような苦しさ・生きづらさを
抱えることになってしまったか、そしてその人たちをどの
ように回復へと導いていくかである。
そのような生きづらさを抱えている人たちに共通して
いるのは自己評価（自己尊重感）の低さであり、それは子
ども時代の安心を得られない育ちに圧倒的に多い。自己評価が低くても、子ども時代は例えば "よ
い子"として振る舞うことができれば生きられるが、性的成熟に
伴って生じる独立の衝動が思春期に「どのようにして自立
していくのか、自立できるのか」という不安を一気に吹
き出させる。種々の不適切行動に苦しむことになるのは、そ
の不安が意志の力では解決できないくらいに強いからであ
る。現代に到って高まっている不安という空気が、昔はな
かった摂食障害などを増加させている。
自己評価の低さは 「三つ子の魂、百まで」というよ
うに幼児~学童期の脳の可塑性の時期を過ぎると性格と
して固定されてしまうため、摂食障害について学びをやる
うえでの自己評価の低さは大きな問題である。自己評価が低くても、子ども時代は例えば "よ
い子"として振る舞っていたりと生きられるが、性的成熟に
伴って生じる独立の衝動が思春期に「どのようにして自立
していくのか、自立できるのか」という不安を一気に吹
き出させる。種々の不適切行動に苦しむことになるのは、そ
の不安が意志の力では解決できないくらいに強いからであ
る。現代に到って高まっている不安という空気が、昔はな
かった摂食障害などを増加させている。

新学術領域「意志動力学」と「思春期」の紹介を読んで

福島県立医科大学 名誉教授
(一般財団法人)桜ヶ丘病院
香山 雪彦

この神経科学ニュース 2017 年第 2 号に2つの新学術
領域の紹介が並んで掲載されていた。一つは「意志動力学
(ウィルダインニクス)」の創成と推進」で、紹介記事には "意
志力を科学する」と副題が付いていたが、その記事の
中には「プロセス依存や、薬物中毒、アバスシー、引きこもり、
現代うつ症候群、摂食障害などが、現代社会でますます
深刻化しており･･･」という記述がなされている。もう一
つの「脳・生活・人生の統合的理解にもとづく思春期から
の主体価値発展学」の紹介記事の中にも「食行動、日常
生活リズム、行動依存などの障害を示す思春期の人々･･･」
という記述がある。

私は長く脳科学の研究に関わり、退職後は精神科医と
して思春期~青年期の人たちの摂食障害と引きこもりに特
化した診療に当たっていた。その人間として、これらの領
域の研究に当たる人たちに伝ええておきたい、理解していた
だきたいと感じることがあるので、この文を投稿させてい
tくことにした。

私は神経生理学を専攻して医学部の教授を務め、研究
分野では動物実験で睡眠・覚醒の神経機構を追求してき
たが、どの学年でも何人が見られるか学部に来ると摂
食障害（摂食障害食不振症・神経性過食症）に苦しんで
留年を繰り返している学生たちが何人もいた。その学生た
ちの話しを聴いていく中で人の心の奥深さ・恐ろしさを強
く感じて、そこで摂食障害の勉強をした。その頃に福島県
立医大精神科の医師や看護師の有志の人たちが摂食障害
に苦しむ人たちとその家族の自助的な活動のグループを
立ち上げたので、私もそのスタッフに加わり、そのミーティ
ングに参加するようになった。「福島お達者くらぶ」とい
うそのグループは 1992 年に開始して 25 年間、東京・大
阪以外の地方都市では最も長く活動しているが、毎月の
ミーティングを一度も欠かさず行った。特に、当事者
と家族の隣りあった部屋での並行ミーティングは、私たち
が全国で最初に始めたものである。

私はその活動に深く関わって、摂食障害について学びをやる
うえでの自己評価の低さは大きな問題である。自己評価が低くても、子ども時代は例えば "よ
い子"として振る舞っていたりと生きられるが、性的成熟に
伴って生じる独立の衝動が思春期に「どのようにして自立
していくのか、自立できるのか」という不安を一気に吹
き出せる。種々の不適切行動に苦しむことになるのは、そ
の不安が意志の力では解決できないくらいに強いからであ
る。現代に到って高まっている不安という空気が、昔はな
かった摂食障害などを増加させている。

自己評価の低さは 「三つ子の魂、百まで」というよ
うに幼児~学童期の脳の可塑性の時期を過ぎると性格と
して固定されてしまうため、摂食障害について学びをやる
うえでの自己評価の低さは大きな問題である。自己評価が低くても、子ども時代は例えば "よ
い子"として振る舞っていたりと生きられるが、性的成熟に
伴って生じる独立の衝動が思春期に「どのようにして自立
していくのか、自立できるのか」という不安を一気に吹
き出せる。種々の不適切行動に苦しむことになるのは、そ
の不安が意志の力では解決できないくらいに強いからであ
る。現代に到って高まっている不安という空気が、昔はな
かった摂食障害などを増加させている。

http://www.jnss.org - 29 -

The Japan Neuroscience Society, since 1974

10 July 2017 Conssecutive Number 211
領域の研究に携わる人たちに理解していただきたいと考えて、この小論を書いた。「安心の学習」はどうすれば可能かは、また機会があれば述べたい。

1）香山雪彦『食を拒む・食に溺れる心：不安という時代の空気の中で』思想の科学社
似ているけれども違うものや違う状況を区別することは動物の生存において重要です。このように外界の僅かな差異を区別する「パターン分離」にとって海馬歯状回が重要であるということが提唱され、幾つかの実験結果によっても支持されています。パターン分離には歯状回の主な出力細胞である顆粒細胞の繊維活動とが重要な役割を果たしていると考えられていますが、顆粒細胞の放電頻度や場所情報の表現が繊維であるという報告もあり、パターン分離の歯状回神経回路レベルでのメカニズムは不明な点も多数あります。我々はこの混乱は歯状回に存在する2種類の興奮性細胞が、これまでの行動中の動物からの電気生理学研究で上手く区別されていないことに起因するのではないかと考えました。

歯状回には下流のCA3への出力を担う顆粒細胞の他に、苔状細胞と呼ばれる興奮性細胞が歯状回門に存在します。苔状細胞は顆粒細胞から入力を受け、顆粒細胞へと出力を返し、歯状回での再帰的回路を形成します（図A）。また苔状細胞はCA3錐体細胞からの入力を受け、CA3から歯状回へのフィードバック入力のハブとなっています。苔状細胞は歯状回の機能に重要であることが示されていますが、行動中の動物での苔状細胞の挙動や情報表現に関してはほとんど分かっていません。本研究では海馬外電生理記録から得られる生理学的な指標をもとに顆粒細胞と苔状細胞を分類し、光遺伝学的な研究を用いた分析方法で区別が妥当であることを確認しました。さらにこの分類に基づいて顆粒細胞、苔状細胞、そして歯状回の下流に位置するCA3錐体細胞の生理学的特徴や場所情報の表現、パターン分離の関与を調べ、それらを比較しました。

我々はまず、細胞外電気生理記録によって得られた海馬歯状回での興奮性神経細胞を顆粒細胞と苔状細胞へと分類するために神経細胞の生理学的特徴から抽出された2つの指標を用いました（図B）。1つ目の指標として、2型dentate spikeの大きさを使用しました。2型dentate spikeは歯状回で見られる特徴的な局所電位パターンであり、極性が歯状回帯でプラシ、分子層でマイナスとなることが知られています。よって2型dentate spikeの大きさを以て解剖学的部位を推定しました。2つの指標として、神経細胞の覚醒中の発火頻度とノンレム睡眠中の発火頻度の比を用いました。2つの指標として、それぞれの神経細胞の波形の特徴を捉えるために、波形の2次導関数の主成分解析から得られる2つのパラメーターを使用しました。これら3つの指標から得られる4つのパラメーターを用いて、K−平均法により興奮性神経細胞が苔状細胞と顆粒細胞に分類されました。

この分類の妥当性を示すために、光遺伝学に基づく苔状細胞の同定を行い、海馬歯状回ではドーパミンD2受容体が苔状細胞特異的に発現し、顆粒細胞においては発現していないことが知られています。このことを利用してドーパミンD2受容体のプロモーター依存的に光感受性プロトンポンプであるアーキロドプシンを発現するマウスを用い、光遺伝学的に苔状細胞を同定しました。その結果、光遺伝学的に同定された苔状細胞は全て、生理学的に分類された苔状細胞のクラスターに含まれることがわかり、生理学的指標に基づいた分類の妥当性が確認されました。

次に、顆粒細胞、苔状細胞、CA3錐体細胞による場所情報の表現を調べるために迷路探索中のマウスの歯状回、CA3領域から細胞外電気生理記録を行いました。その結果、顆粒細胞の大半は迷路上での場所受容野を持たないか、持っていたとしても1つ以上の場所受容野しか持たないことが分かりました。一方、大半の苔状細胞は場所受容野を持つとおり、その多くは2つ以上の場所受容野を持っていた。また場所受容野における最大発火頻度は顆粒細胞では低い一方、苔状細胞では高い最大発火頻度を示しました。CA3錐体細胞の場所受容野の数は、顆粒細胞と苔状細胞の中間ほどでした。

顆粒細胞の低い発火頻度や疎な場所情報の表現はパターン分離にとって好都合であり、実際に顆粒細胞が苔状細胞やCA3錐体細胞に比べて強いパターン分離を示すかどうか、を次に調べました。そのために、同じサイズであるが異なった模式を持つ2つの迷路（迷路A、迷路B）を探索しているマウスの神経細胞活動を記録し、それぞれの神経細胞が異なる迷路においてどのように場所受容野の再配置を示すのかを解析しました。2つの迷路での発火頻度マップの相関に基づき場所受容野の再配置の強さを計算したところ、場所受容野の再配置が起こりにくい事が分かりました。これにより、顆粒細胞が苔状細胞やCA3錐体細胞に比べて弱いパ...
パターン分離を示すことを示唆します（図C）。
顆粒細胞が下流の苔状細胞やCA3錐体細胞に比べて弱いパターン分離を示すことは、苔状細胞やCA3錐体細胞において場所情報がどのように計算されているのか、場所受容野が顆粒細胞からの非常に強いシナプス入力を通して受け継がれるのか、という疑問を生みます。この疑問に答えるために、我々は相互相関ヒストグラムに基づいてシナプス結合が推定され顆粒細胞、苔状細胞間での場所情報表現の相関を調べました。そうしたところ、シナプス結合が推定されているにも関わらず、シナプス前の顆粒細胞の場所受容野とシナプス後の苔状細胞の場所受容野が相関していることは稀であることが分かりました。

以上をまとめると、観察されたような顆粒細胞の低い発火頻度や疎な場所情報表現は、パターン分離にとって好都合でありますが、意外なことに顆粒細胞はその下流に位置する苔状細胞やCA3錐体細胞に比べて弱いパターン分離しか示しませんでした。さらにシナプス結合の推定される顆粒細胞から苔状細胞への場所受容野が受け継がれる事例は希少でした。これらの結果は、パターン分離が顆粒細胞の段階で完全に行われることではなく、苔状細胞やCA3錐体細胞も含めたネットワーク全体において行われていることを示唆しています（図D）。その詳細な回路機構に関しては現在さらなる研究を進めております。

最後となりましたが、本研究は大学院の指導教官かつセンターであるGyörgy Buzsáki教授をはじめ、Buzsáki研究室のメンバーと同窓生などの方々の直接、間接の寛大なご支援の賜物であります。この場をお借りして心より感謝を申し上げたいと思います。

(A) 海馬歯状回の解剖学的構造

(B) 頓粒細胞と苔状細胞の分類方法

(C) 各細胞種のパターン分離への関与

(D) パターン分離の神経回路機構
我々の生活環境におけるストレスは、急性ストレスと慢性ストレスに大別されます。免疫系において、慢性ストレスは「悪」のイメージが強いのに対し、急性ストレスには「良」の部分があるといわれています。たとえば、日常の運動は心循環器系や呼吸器系に対して急性ストレスとなりますが、定期的に運動をすることで病気になりにくくなるということはよく知られています。急性ストレスに対する生理機能の維持には、自律神経や視床下部-下垂体-副腎系の応答が不可欠です。免疫系では、これらが産生するノルアドレナリン、アセチルコリンや糖質コルチコイドによって過度な炎症の亢進が抑えられることが知られています（図 A）。今回の研究では、自律神経の交感神経を事前に活性化することで炎症を抑え、この抗炎症作用には延髄の C1 ニューロンが関与していることがわかりました。

今回の研究では、急性ストレスとして 10 分間の拘束ストレスを用いました。急性腎不全を引き起こす前に拘束ストレスをかけると、指標である血漿クレアチニン濃度は有意に抑えられました。拘束ストレスに曝されたマウスの脾細胞移植やノルアドレナリンを与えた脾細胞の投与でも急性腎不全の軽減効果が認められました。

延髄 C1 ニューロンは拘束ストレスにより活性化し、自律神経や視床下部-下垂体-副腎系の制御の一部を担っています。興味深いことに、延髄 C1 ニューロンを特異的に除去すると、拘束ストレスによる急性腎不全の軽減効果が消失しました。一方、延髄 C1 ニューロンを光遺伝学的手法を用いて特異的に刺激すると、拘束ストレスと同様に急性腎不全の軽減作用が認められました。また、延髄 C1 ニューロン光刺激による急性腎不全の軽減効果は、迷走神経の切断および糖質コルチコイド受容体阻害薬の投与では消失せず、β 2 アドレナリン受容体阻害薬では消失したことから、交感神経を介することことが示唆されました。

自律神経を介する抗炎症作用として Cholinergic Anti-Inflammatory Pathway (CAP) が知られています（図 B 説明参照）。今回の研究で観察された拘束ストレスによる急性腎不全の軽減作用も、上記の結果から CAP を介していることがわかりました。今後、この経路の分子メカニズムを明らかにしてることで、疾患予防や医療費削減への貢献が期待されます。

C1 neurons mediate a stress-induced anti-inflammatory reflex in mice.

【研究者の声】
私の子供の頃の夢は宇宙飛行士になることでした。進路で悩んでいた時、宇宙医学の研究を行っている岐阜大学医学部生理学の森田啓之教授から、たった 2 行のメールをもらいました。「お前は子供の頃、アンパンマンやウルトラマンになりたいと思っていたこと Gardensrite だよ。」このメールをもらった 10 年、自分のさらなる飛躍のため留学（バージニア大学）を決意し、PI の Dr. Patrice G. Guyenet から私の研究観を広げてもらいました。今回の論文のアクセプトを含め、非常に充実した研究生活を送ることができるのは、私の夢を応援してくれる人がいるからだと改めて思いました。

【略歴】
2005 年 九州大学歯学部卒業、2008 年 岐阜大学大学院医学系研究科博士課程修了後、岐阜大学大学院医学系研究科にて特別研究員（日本学術振興会 DC2）、助教、講師、准教授、2014 年 米国パーサニア大学（日本学術振興会海外特別研究員）、2016 年から岐阜大学大学院医学系研究科准教授（現職）。

http://www.jnss.org - 33 - The Japan Neuroscience Society, since 1974
(A) 感染，外傷や虚血によりマクロファージが活性化し，TNF-αやIL-1βなどのサイトカインが放出される。これらサイトカインは，感覚神経の末梢に結合し，そのシグナルは中枢へ運ばれる。反射的に，自律神経系（交感神経，迷走神経（副交感神経））や視床下部－下垂体－副腎系が活性化し，それらの系から放出されるノルアドレナリン，アセチルコリンやコルチコステロンが，マクロファージの過活動を抑制する。

(B) 急性拘束ストレスによる，Cholinergic Anti-inflammatory Pathway（CAP）を介した急性腎不全の軽減作用。CAPでは，コリンアセチルトランスフェラーゼ陽性脾臓メモリーT細胞のβ2アドレナリン受容体に脾交感神経からのノルアドレナリンが結合し，放出されたアセチルコリンが近接するマクロファージのα7ニコチン性受容体に結合することで，炎症性サイトカインの放出が制御される。
神経科学ニュースへの
原稿を募集しています

学会への提言、研究雑感、学会見聞録、書評等、神経科学の発展につながるものであればどのようなものでも結構ですので以下の要領でお送りください。神経科学ニュースは英文記事の充実を目指しております。英文での掲載も希望される方は、英文記事をあわせてお送りください。

1. 原稿は電子版のみを受け付けます。原稿は電子メール添付ファイルでお送り下さい。
 a. 受付可能なファイル形式はWord (DOC, DOCX)です。それ以外にもある程度対応可能ですが、事前にご相談ください。また作成に用いたアプリケーションに関わらずHTML, RTFファイルは受付可能です。テキストファイルも可ですが、その場合メール本文に埋め込んでください。
 b. 画像ファイルはPICT、JPEGまたはTIFFファイルで、可能な限り圧縮して本文とは別のファイルでお送りください。
2. 掲載の可否と時期については、編集委員会で検討の上、決定させていただきます。
3. 著者校正は原則として行いません（お送りいただいたファイルをそのまま利用します）ので、誤りの無いことをお確かめの上、原稿をお送り下さい。ただし、編集委員会から修正をお願いする場合があります。
4. 締切は通例3月、6月、9月、12月の25日ですが、都合により変動することがあります。
5. 掲載料は不要ですが、掲載依頼者は原則として学会員あるいは協賛・後援団体であることが必要です。
6. 原稿は、news@jnss.orgまでお送りください。

求人情報、学会・シンポジウムの案内、助成金の案内は、ホームページにて、掲載させていただきますので、http://www.jnss.org/adinfo/をご参照ください。

日本神経科学学会のFacebookとTwitterの公式アカウントができました。各種のイベント情報や、求人募集情報など、様々な最新情報を発信しています。ご興味のある方はぜひチェックしてください。

facebook.com/JapanNeuroscienceSociety
twitter.com/jnsorg (@jnsorg)
編集後記

今期より神経科学ニュース委員長を拝命致しました。名古屋大学の山中章弘と申します。これまでホームページ編集委員長を一任務って参りました。ホームページでは、会員だけでなく、一般の方に広く情報を周知するために、平易な内容にすることに努めました。また、昨今では記事の内容によっては炎上騒ぎとなるために、そのようなことが起きないように、記事の内容や表現などを細心の注意を払っていたため、少々尖った内容のものを掲載するのは控えざるを得ませんでした（例えば、記録や操作のために、いろいろなものが脳に刺さっているネズミの写真や、専門性の高い高度な研究内容の記事）。また情報の即時性が求められるため、毎日数件掲載可否を判断するなど忙しい業務もありました。

翻って、神経科学ニュースでは、神経科学学会会員の方に向けた内容であり（一般の方も見ることもできるのですが）、上記のような記事や写真についても掲載しており伝えることができるのではないかと思っております。また、発行も年4回ですので、記事や企画についても時間をかけて練ることが可能になっています。今号から私が企画編集を務め、3年間12号発行して参ります。

最新の神経科学の話題や、問題点の提案など、会員の方に資する情報発信を努めます。毎号の神経科学ニュースの到着を楽しみにしてもらえるように頑張って参りますので、ご意見や掲載して欲しい原稿などありましたら、どしどしお寄せいただけますよう心よりお願い申し上げます。また、ニュース編集委員の方から記事の依頼など受けた場合には、何卒快くお引き受け頂けますようお願い致します（もちろん、どうしても無理な場合は断っていただいて構いません）。

ニュース編集委員会 委員長 山中章弘